
1

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЧЕРНІГІВСЬКА ПОЛІТЕХНІКА»

Міжнародна науково-практична конференція

«Вільне програмне забезпечення
у освіті, науці та бізнесі»

02-03 жовтня 2025 р.
м. Чернігів

Чернігів 2025

2

УДК 004.49:[37+001+334.722]
В72

Рекомендовано до друку вченою радою

Національного університету «Чернігівська політехніка» (протокол № 12 від 24.11.2025 року)

В72

Вільне програмне забезпечення у освіті, науці та бізнесі : Міжнародна науково-практична конференція
(02-03 жовтня 2025 р. м. Чернігів) / Національний університет «Чернігівська політехніка» ; відп. за вип.
Мехед Дмитро Борисович – Чернігів : НУ «Чернігівська політехніка», 2025. – 76 с.

EN: Co-Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or European Commission or Directorate-General for Communications
Networks, Content and Technology. Neither the European Union nor the granting authority can be held responsible for them.
WIN-WIN EDIH project received funding under the Digital Europe Program under grant agreement No. 101191647.

UA: Співфінансується Європейським Союзом. Висловлені погляди та думки належать виключно автору(ам) і не
обов’язково відображають позицію Європейського Союзу чи Європейської Комісії. Європейський Союз та
Європейська Комісія не несуть відповідальності за будь-яке використання цієї інформації. Проєкт WIN-WIN EDIH
отримав фінансування в межах програми «Цифрова Європа» за грантовою угодою №101191647.

ISBN 978-617-7932-92-4

ОРГАНІЗАЦІЙНИЙ КОМІТЕТ
Голова організаційного комітету:
Анатолій Приступа – проректор з наукової роботи, к.т.н., доцент.
Заступник голови:
Володимир Базилевич – директор ННІ електронних та інформаційних технологій, к.е.н., доцент.
Члени організаційного комітету:
Ірина Білоус – завідувач кафедри інформаційних технологій та програмної інженерії, к.т.н., доцент.
Андрій Роговенко – завідувач кафедри інформаційних та комп’ютерних систем, к.т.н., доцент.
Андрій Хижняк – старший викладач кафедри інформаційних та комп’ютерних систем
Юлія Ткач – завідувач кафедри кібербезпеки та математичного моделювання, д.пед.н., професор.
Юрій Денисов – завідувач кафедри електроніки, автоматики, робототехніки та мехатроніки, д.т.н., професор.
Роман Буйний – завідувач кафедри електричної інженерії та інформаційно-вимірювальних технологій, к.т.н., доцент.
Дмитро Мехед – доцент кафедри кібербезпеки та математичного моделювання, к.п.н., доцент.
Катерина Максьом - завідувачка кафедри соціальної роботи, к.п.н., доцент.
Євген Патлань – Еngineering Manager, Percona
Юлія Дайнеко – Голова правління Chernihiv.IT
Влад Носовець – Координатор Chernihiv.IT

Відповідальний координатор конференції:
Мехед Дмитро Борисович, тел. (063) 6908000, е-mail: d.mekhed@stu.cn.ua
https://feit.stu.cn.ua/foss/

*За зміст матеріалів, викладених в тезах доповідей персональну відповідальність несуть автори

УДК 004.49:[37+001+334.722]

ISBN 978-617-7932-92-4 © Національний університет «Чернігівська політехніка», 2025

3

ЗМІСТ

Абдразаков І. В. ВІДКРИТІ ТЕХНОЛОГІЇ ЯК КАТАЛІЗАТОР ОРГАНІЗАЦІЙНО-
ЕКОНОМІЧНОГО РОЗВИТКУ УКРАЇНСЬКОГО IT-СЕКТОРУ
В УМОВАХ ВОЄННОГО СТАНУ .. 5
Шкоденко Т. КОМБІНОВАНЕ ВИЯВЛЕННЯ ІНСАЙДЕРСЬКИХ ЗАГРОЗ У КІС:
MVP СИСТЕМИ НА ОСНОВІ ЕКСПЕРТНИХ ПРАВИЛ,
UEBA-МОДЕЛЕЙ ТА BIG DATA-ОБРОБКИ .. 7
Бивойно Т. П., Бивойно П. Г.ПОЄДНАННЯ ВИВЧЕННЯ ДИСЦИПЛІН
МОДЕЛЮВАННЯ ТА ОБ’ЄКТНО ОРІЄНТОВАНОГО ПРОГРАМУВАННЯ 9
Лисенок Д. В., Милиця А. Ю., Бобришев Є. С.ПОБУДОВА НИЗЬКОВИТРАТНИХ
СИСТЕМ НА БАЗІ FOSS З ІНТУЇТИВНИМ ІНТЕРФЕЙСОМ ТА АСИНХРОННОЮ
ОБРОБКОЮ ... 12
Maksymov O. OPEN SOURCE AI-POWERED TEST CASE GENERATION 15
Перетятько Ю. М. СТРАТЕГІЇ МОНЕТИЗАЦІЇ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ З
ВІДКРИТИМ КОДОМ... 19
Пода О. Л. ВПЛИВ ШІ НА ПСИХІЧНЕ ЗДОРОВ'Я: УСПІШНЕ МАЙБУТНЄ
ЧИ ВЕЛИКА ЗАГРОЗА? ... 21
Романенко М. В. ІНТЕГРАЦІЯ FOSS У НАВЧАННІ НА ПРИКЛАДІ ОСВІТНЬОЇ
ПЛАТФОРМИ MOODLE .. 23
Яковлєва А. О., Милиця А. Ю., Казнадій С. П БЕЗПЕЧНА BACKEND-АРХІТЕКТУРА
НА ОСНОВІ FOSS ДЛЯ ЦИФРОВІЗАЦІЇ УПРАВЛІННЯ
ВИКЛАДАЦЬКОЮ ДІЯЛЬНІСТЮ ... 27
Yasinska Y. V., chief Bazylevych V. M. COMPARISON OF IMPLEMENTATION
OF DYNAMIC ROUTING PROTOCOLS IN OPEN SOURCE AND
COMMERCIAL SOLUTIONS ... 30
Веремеєнко В. В., Роговенко А. І. ЗАСТОСУВАННЯ ЗЛІПКУ АУДІО ЗАПИСІВ ДЛЯ
ПОШУКУ ЗБІГІВ ДЖЕРЕЛ ЗВУКУ ЗНЯТИ З РІЗНИХ ПРИСТРОЇВ ЗАПИСУ
В СИСТЕМІ ВІДЕОСПОСТЕРЕЖЕННЯ .. 34
Грищенко А. А., Корбач Д. В. GITHUB І GITLAB ЯК ІНСТРУМЕНТИ КЕРУВАННЯ
ПРОЄКТАМИ ТА КООРДИНАЦІЇ РОЗРОБНИКІВ .. 37
Клочко К. М., Роговенко А. І., Бобришев Є. С. ДОСВІД КЕРУВАННЯ ВЛАСНИМИ
СЕРВЕРАМИ У ХМАРІ І У ЛОКАЛЬНОМУ ДАТА-ЦЕНТРІ ... 40
Корбач Д. В. ПРОЄКТУВАННЯ АРХІТЕКТУРИ ВІРТУАЛЬНОЇ НАВЧАЛЬНОЇ
ЛАБОРАТОРІЇ.. 42
Макаренко О. Ю. ГЕНЕРАТИВНИЙ ШТУЧНИЙ ІНТЕЛЕКТ: ОСВІТНІ ТА ПРИКЛАДНІ
АСПЕКТИ .. 45
Міщенко М. В. ДОСЛІДЖЕННЯ ЕНЕРГОСПОЖИВАННЯ ТА ШВИДКОДІЇ
ЕКСПЕРИМЕНТАЛЬНОЇ ВЕРСІЇ CPYTHON3.13 З ДОДАНИМИ JIT-КОМПІЛЯТОРОМ ТА
ВИМКНЕНИМ GIL.. 46
Москаленко Д. О., Базилевич В. М., Казнадій С. П. КОМП’ЮТЕРНА МОДЕЛЬ
ПОБУДОВИ ПЕРЕЛІКУ РИЗИКІВ БЕЗПЕКИ КРИТИЧНОЇ ІНФРАСТРУКТУРИ
СЕКТОРАЛЬНОГО РІВНЯ ... 49

4

Москаленко С. С., Лисенко Д. Е. МЕТОДИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ
КІБЕРБЕЗПЕКИ МЕРЕЖЕВОЇ ІНФРАСТРУКТУРИ .. 51
Олефіренко Р. А. МОДЕЛЮВАННЯ ТА РОЗРОБКА РОБОТИЗОВАНОГО РОЗКИДАЧА
ДОБРИВ З АДАПТИВНИМ КОНТРОЛЕМ ДОЗИ .. 54
Rohovenko M. A., Kaznadiy S. P. FREE/OPEN SOURCE SOFTWARE IN DATA
ANALYTICS LEARNING .. 57
Семака Є. І., Лисенко Д. Е. ПРОЕКТУВАННЯ ТА УПРАВЛІННЯ ВІРТУАЛІЗОВАНИМИ
МЕРЕЖАМИ ЗА ДОПОМОГОЮ СИСТЕМИ МОНІТОРИНГУ ZABBIX 59
Казимір Г. С. МАСШТАБУВАННЯ СИСТЕМ ОНЛАЙН-КОНФЕРЕНЦІЙ
З ВИКОРИСТАННЯМ WEBRTC ТА DOCKER ... 61
Іванов В. В., Лисенко Д. Е. МЕРЕЖЕВА ВІРТУАЛІЗАЦІЯ В ХМАРНИХ
СЕРЕДОВИЩАХ ... 62
Zavorotnyi O. V. MONITORING AND LOAD FORECASTING OF THE
TELECOMMUNICATION SERVICES IN DIGITAL LEARNING ECOSYSTEM 65
Ткаченко К. О., Роговенко А. І., Бобришев Є. С. ВИКОРИСТАННЯ ВІЛЬНОГО
ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ КЛАСИФІКАЦІЇ АУДІОСИГНАЛІВ 68
Кулак О. Ю. КОНТРОЛЬ ЯКОСТІ ДАНИХ У CRM ЗА ДОПОМОГОЮ ВІДКРИТОЇ
ПЛАТФОРМИ SUITECRM ... 70
Тєлєгін К. Є. CRM-СИСТЕМИ ДЛЯ БІЗНЕСУ АВТОМИЙОК ТА ДІТЕЙЛІНГ-ЦЕНТРІВ
НА ОСНОВІ ВІДКРИТОГО ПЗ .. 72

5

Абдразаков І. В.
Національний університет «Чернігівська політехніка»,

кафедра економіки, обліку і оподаткування, м. Чернігів, Україна
Контактний автор: Ігор Абдразаков,

e-mail: iabdrazakov@stu.cn.ua,
ORCID: 0009-0008-5831-7525

ВІДКРИТІ ТЕХНОЛОГІЇ ЯК КАТАЛІЗАТОР ОРГАНІЗАЦІЙНО-
ЕКОНОМІЧНОГО РОЗВИТКУ УКРАЇНСЬКОГО IT-СЕКТОРУ

В УМОВАХ ВОЄННОГО СТАНУ

Анотація. Досліджено роль відкритого програмного забезпечення у процесах
диджиталізації українського бізнесу в умовах воєнного стану. Розроблено методику оцінки
ефективності впровадження FOSS-рішень через інтегральний показник EFOSS. Проаналізовано
успішні кейси міграції на відкриті технології ПриватБанку, платформи Дія та інших компаній.
Ідентифіковано ключові бар'єри цифрової трансформації та запропоновано рекомендації щодо їх
подолання на державному, корпоративному та освітньому рівнях.

Ключові слова: диджиталізація; відкрите програмне забезпечення; цифрова
трансформація; FOSS; організаційно-економічний розвиток.

Вступ
Повномасштабне вторгнення в Україну кардинально змінило парадигму цифрової

трансформації вітчизняного бізнесу. На перший план вийшли питання технологічного суверенітету,
безпеки даних та операційної стійкості. У сучасних умовах економічних змін та непередбачуваних
обставин, викликаних станом війни та іншими кризами, цифровізація стає життєво важливою для
виживання та успіху підприємств [1]. Відкриті технології трансформувалися в стратегічний
інструмент забезпечення безперервності бізнесу через відсутність прив'язки до конкретного вендора
та можливість повного контролю над кодом. Відсутність ліцензійних обмежень дозволяє швидко
масштабувати рішення та адаптувати їх під специфічні потреби без додаткових витрат. Глобальна
спільнота розробників забезпечує постійну підтримку та розвиток продуктів навіть в умовах
геополітичної нестабільності. Однією з головних цілей цифрової трансформації економіки в Україні
на 2024 р. є збільшення частки ІТ у ВВП країни до 10 % [2].

Матеріали та методи
Розроблена методика інтегрує класичні фінансові метрики (ROI, TCO) з унікальними

показниками FOSS-середовища. Використання цифрових інструментів прискорює прийняття
оптимальних управлінських рішень, дозволяє в режимі реального часу реагувати на різноманітні
ринкові зміни [3]. Інтегральний показник ефективності EFOSS розраховується як зважена сума
економічних (40%), технологічних (35%) та організаційних (25%) індикаторів. Економічні показники
включають TCO з урахуванням відсутності ліцензійних платежів та вартість міграції. Технологічні
метрики охоплюють швидкість усунення вразливостей та активність спільноти розробників.
Організаційні індикатори вимірюють швидкість адаптації персоналу та рівень незалежності від
постачальників. Формула розрахунку: EFOSS = α × (ROI/TCO) + β × TechScore + γ × OrgScore, де
вагові коефіцієнти визначені експертним методом на основі опитування українських IT-компаній.

mailto:iabdrazakov@stu.cn.ua

6

Результати
За даними дослідження KPMG та Forbes Ukraine, цифрова трансформація стала невід'ємною

частиною стратегічного планування для переважної більшості українських компаній. У 99%
випадків диджиталізація включена до довгострокових цілей бізнесу [4]. ПриватБанк здійснив
міграцію на OpenStack, що забезпечило зниження витрат на інфраструктуру на 45%.
Технологічний стек включає OpenStack для віртуалізації, Kubernetes для оркестрації контейнерів,
PostgreSQL як основну СУБД, Prometheus та Grafana для моніторингу. Платформа Дія,
побудована на відкритих технологіях, обслуговує понад 20 мільйонів користувачів.
Найважливішими для бізнесу результатами цифровізації є показники зменшення операційних
витрат (76%) та залучення/утримання клієнтів (68%). За даними опитування Kyivstar Business
Hub, український бізнес поступово переходить до цифрових технологій і використовує штучний
інтелект, хмарні рішення, великі дані та кібербезпеку [5]. Важливим є досвід компанії SoftServe,
яка повністю перевела внутрішню інфраструктуру на відкриті рішення, зекономивши значні
кошти на ліцензіях та підвищивши продуктивність розробників. ЕПАМ Україна впровадила
гібридну модель з використанням Jenkins, GitLab та Kubernetes для CI/CD процесів.

Обговорення
Дослідження виявило кілька ключових проблем впровадження цифрових технологій. Виділено

основні перешкоди на шляху впровадження інновацій в умовах цифровізації та ризики, пов'язані з
впровадженням цифрових технологій [3]. Кадровий дефіцит залишається найгострішою проблемою
- бракує спеціалістів з досвідом роботи з open source технологіями. За даними IT Ukraine Association,
середній час закриття вакансії FOSS-спеціаліста значно перевищує аналогічний показник для
традиційних технологій. В Україні процес цифровізації йде повільно, особливо через війну [1].
Організаційний опір проявляється у недовірі топ-менеджменту до відкритих рішень через відсутність
традиційної вендорської підтримки. Технічні виклики включають складність інтеграції та
фрагментованість документації. На державному рівні необхідно створити національну програму
підготовки FOSS-спеціалістів та розробити стандарти для критичної інфраструктури. Корпоративний
рівень вимагає впровадження гібридної моделі з поступовою міграцією некритичних систем.
Компаніям рекомендується почати з пілотних проектів на некритичних системах для набуття досвіду
та створення внутрішніх центрів компетенцій OSPO (Open Source Program Office).

Висновки
Дослідження демонструє, що відкриті технології стали стратегічним фактором розвитку

українського бізнесу в умовах війни. Середній індекс цифровізації українських компаній — 56 зі
100, засвідчив про амбітний шлях трансформації [4]. Компанії, які здійснили міграцію на FOSS,
відзначають підвищення операційної стійкості та зниження залежності від зовнішніх факторів.
Диджиталізація бізнесу в умовах кризи стає ключовим чинником виживання та розвитку
компаній. Ключовими факторами успіху є поступовий підхід до міграції, системні інвестиції в
навчання персоналу та активна участь у розвитку глобальної FOSS-екосистеми. Подальші
дослідження мають зосередитися на розробці галузевих стандартів впровадження FOSS та
формуванні best practices для різних секторів економіки.

Список використаних джерел
1. Перевозова І.В., Земляков І.С., П'яста А.Р., Драганчук Н.Я. Стратегічний розвиток підприємств в умовах

диджиталізації бізнесу. Академічні візії. 2024. №32. URL: https://www.academy-vision.org/index.php/av/article/view/1234
(дата звернення: 21.09.2025).

https://www.academy-vision.org/index.php/av/article/view/1234
https://www.academy-vision.org/index.php/av/article/view/1234
https://www.academy-vision.org/index.php/av/article/view/1234
https://www.academy-vision.org/index.php/av/article/view/1234

7

2. Цифрова трансформація економіки України в умовах війни. Січень 2024 року. Національний інститут
стратегічних досліджень. URL: https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomikyukrayiny-v-
umovakh-viyny-sichen-2024 (дата звернення: 21.09.2025).

3. Антонюк В.П., Корнієнко Т.О. Цифровізація та інноваційний розвиток підприємства: тенденції, проблеми та
перспективи. Вісник Львівського торговельноекономічного університету. Економічні науки. 2023. №74. DOI:
https://doi.org/10.32782/2522-1205-2023-74-14

4. Чемпіони диджиталізації 2024. KPMG в Україні. 2025. URL: https://kpmg.com/ua/uk/home/insights/2025/01/
chempiony-didzhytalizatsiyi-2024.html (дата звернення: 21.09.2025).

5. Як технології змінили український бізнес у 2024 році: огляд дослідження. Kyivstar Business Hub. 2025. URL:
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-naukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-
business-hub (дата звернення: 21.09.2025).

Шкоденко Т.

КОМБІНОВАНЕ ВИЯВЛЕННЯ ІНСАЙДЕРСЬКИХ ЗАГРОЗ У КІС:

MVP СИСТЕМИ НА ОСНОВІ ЕКСПЕРТНИХ ПРАВИЛ,
UEBA-МОДЕЛЕЙ ТА BIG DATA-ОБРОБКИ

Анотація. Робота презентує MVP гібридної системи виявлення інсайдерських загроз у

комп’ютерних інформаційних системах бізнес-структур. Система поєднує експертні правила
(policy-контроль і відомі сценарії), поведінкову аналітику користувачів та сутностей (UEBA) на
базі ML-моделей, а також конвеєр обробки великих даних для низької латентності та
масштабованості. MVP орієнтовано на сумісність з ISO/IEC 27001:2022 та NIST CSF 2.0,
застосовано мапування покриття на MITRE ATT\&CK, реалізовано ризик-скоринг подій,
пояснюваність (XAI) та мінімізацію приватних даних (privacy-by-design).

Ключові слова: інсайдерський ризик, UEBA, ISO/IEC 27001, NIST CSF 2.0, MITRE
ATT\&CK, Big Data, explainable AI

Проблематика та мета. Інсайдерські інциденти (навмисні/ненавмисні дії працівників і
контрагентів) характеризуються контекстністю, тривалими «повільними» відхиленнями та
низькою помітністю у класичних сигнатурних підходах. Мета MVP — продемонструвати
працездатність гібридної парадигми: швидко визначати відомі порушення правилами та виявляти
нові/складні патерни поведінки ML-моделями, забезпечивши прозорий ризик-менеджмент і
відповідність стандартам.

Методологічні засади. A. Гібридний підхід: експертні правила ↔ UEBA-моделі
(аномалії/класифікація) ↔ Big Data-конвеєр.

B. Управління ризиками: узгодження з ISO/IEC 27001 (моніторинг, логування, PDCA) та
NIST CSF 2.0 (Govern/Identify/Detect/Respond/Recover).

C. Таксономія загроз: мапування детекторів на MITRE ATT&CK для вимірюваного
покриття.

D. Етичність і комплаєнс: мінімізація атрибутів персональних даних (псевдонімізація,
токенізація), контроль доступів, аудит.

Архітектура MVP (референс)
1. Збирання даних: системні журнали, події доступу, VPN/SSO, EDR/AV, хмарні audit logs.

Транспорт — Kafka (stream), резерв — файловий/об’єктний сховище.

https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://niss.gov.ua/news/komentari-ekspertiv/tsyfrova-transformatsiya-ekonomiky-ukrayiny-v-umovakh-viyny-sichen-2024
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://doi.org/10.32782/2522-1205-2023-74-14
https://kpmg.com/ua/uk/home/insights/2025/01/%20chempiony
https://kpmg.com/ua/uk/home/insights/2025/01/%20chempiony
https://kpmg.com/ua/uk/home/insights/2025/01/chempiony-didzhytalizatsiyi-2024.html
https://kpmg.com/ua/uk/home/insights/2025/01/chempiony-didzhytalizatsiyi-2024.html
https://kpmg.com/ua/uk/home/insights/2025/01/chempiony-didzhytalizatsiyi-2024.html
https://kpmg.com/ua/uk/home/insights/2025/01/chempiony-didzhytalizatsiyi-2024.html
https://kpmg.com/ua/uk/home/insights/2025/01/chempiony-didzhytalizatsiyi-2024.html
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub
https://hub.kyivstar.ua/articles/yak-tehnologiyi-vplivali-na-ukrayinskij-biznes-u-2024-roczi-rezultati-doslidzhennya-kyivstar-business-hub

8

2. Зберігання/обробка: Lakehouse (Parquet/Delta) + Spark/Flink для batch/stream-аналітики;
агрегати «користувач-сесія-ресурс».

3. Експертні правила: DSL/JSON-політики (RBAC-порушення, доступ поза графіком, масові
експортні операції, підвищення привілеїв, підозрілі ланцюги подій).

4. UEBA-модулі:
− пошук аномалій: Isolation Forest / One-Class SVM / автоенкодер;
− поведінкові профілі: частоти, сезонність, міжподієві інтервали, граф взаємодій;
− класифікація сценаріїв (за наявності лейблів).
5. Злиття сигналів і ризик-скоринг: ансамблювання правил і ML-скорів (Bayesian/weighted

sum), нормалізація 0–100, динамічні пороги.
6. XAI та SOC-workflow: SHAP/LIME-пояснення для топ-факторів; панель тріажу, SLA-

реагування; інтеграція з SIEM/SOAR (webhook/REST).
7. MLOps та життєвий цикл: контроль дрейфу, періодичний ретренінг, A/B-оцінювання

детекторів, еталонні датасети, версіювання моделей/правил.
8. Безпека й приватність: сегментація даних, маскування PII, контроль доступу (least

privilege), підпис подій і цілісний аудит.
Дані й експериментальна постановка:
− Джерела. Синтетично згенеровані журнали + анонімізовані витяги корпоративних логів;

баланс «звичайна активність / ризикові сценарії».
− Ознаки. Часові (година, день тижня, сезонність), топологічні (граф доступів), частотні,

статистика сесій/обсягів, контекст (локація, пристрій), «рідкі» події (USB-монтування, масові
експортні операції).

− Налаштування. Latency цілі — <5 хв. для стрімінгу, <30 хв. для batch-агрегатів; оновлення
профілів — щодобово.

Метрики оцінювання:
− Detect/Response. MTTD, MTTR;
− Якість детекції. ROC-AUC/PR-AUC, TPR@FPR=k, Precision@top-N, FPR, FNR;
− Операційні. Частка інцидентів, закритих в SLA; навантаження на аналітика (alerts/FTE);

середній ризик-бал інцидентів; latency конвеєра.
Результати MVP (лабораторний стенд):
− Покриття сценаріїв. 90–100% для відомих порушень правилами; +25–40% додаткових

«повільних» аномалій за рахунок UEBA на валідаційних вибірках.
− Хибнопозитивні спрацювання. Зниження на 18–27% після ансамблювання сигналів і

запровадження контекстних порогів.
− Час виявлення (MTTD). Скорочення з годин до хвилин у стрімінгу; MTTR скоротився

завдяки XAI-поясненням та уніфікованому тріажу.
− Керованість. Мапування на ATT&CK дозволило виявити «прогалини» та сформувати

пріоритети розвитку контенту SOC.

Примітка: наведені показники — результати контрольованих експериментів на поєднанні

синтетичних і анонімізованих даних; у продуктивному середовищі очікується додаткова
калібровка порогів і профілів.

9

Новизна та практична цінність:
− Інтеграція правил і UEBA з ризик-скорингом та пояснюваністю для прийняття

управлінських рішень.
− Узгодження з ISO/IEC 27001 і NIST CSF 2.0, вимірність через MITRE ATT&CK.
− Операційна придатність: низька латентність, масштабованість (stream + lakehouse),

чіткий тріаж і KPI.
Обмеження. Залежність від якості логів, можливість концептуального дрейфу, потреба в

адаптації під домен/процеси компанії, правові аспекти приватності (PII/HR-дані).
Дорожня карта:
1. Розширення джерел (DLP, CASB, SaaS-аудити).
2. Графові моделі (GraphSAGE/Node2Vec) для рольових і міжвідділових патернів.
3. Активне навчання з участю аналітиків SOC; авто-генерація правил з інцидентів.
4. Автоматизація реагування (SOAR playbooks) із поетапним ввімкненням.
Висновки. MVP підтвердив ефективність гібридного підходу: поєднання експертних

правил, UEBA та Big Data-обробки підвищує повноту й своєчасність виявлення інсайдерських
подій при керованому рівні хибних спрацювань і відповідності стандартам. Рішення доцільно
масштабувати поетапно, починаючи з критичних процесів і розширюючи покриття залежно від
ризик-профілю бізнесу.

Бивойно Т. П., Бивойно П. Г.

Національний університет «Чернігівська політехніка»

ПОЄДНАННЯ ВИВЧЕННЯ ДИСЦИПЛІН МОДЕЛЮВАННЯ ТА ОБ’ЄКТНО
ОРІЄНТОВАНОГО ПРОГРАМУВАННЯ

Оволодіння засобами імітаційного моделювання та вмінням будувати відпо-відні моделі має

суттєве значення в підготовці розробників сучасних ІТ систем, але розробка імітаційної моделі є
достатньо складним завданням.

Трудомісткість розробки моделей можна зменшити за допомогою існуючих ефективних
інструменти моделювання. Для моделювання систем, які складаються з об’єктів, що взаємодіють
у часі, можна застосовувати GPSS [1]. Цей інструмент використовує концепцію моделювання
дискретних подій і спеціалізовану мову програмування або технологію блок діаграм, що надає
можливість використовувати його і не спеціалістами. Більш потужним інструментом є AnyLogic
[2], який дозволяє вирішувати задачі моделювання системної динаміки, моделювання дискретних
подій та реалізовувати агентно-орієнтоване моделювання.

Суттєвим недоліком використання згаданих інструментів у навчальному процесі є
відсутність доступу до вихідного коду, що не дає можливості викори-стовувати їх в якості
прикладів будови та реалізації масштабних програмних систем у підготовці спеціалістів з ІТ..

Ми пропонуємо використовувати в навчальному процесі підхід, при якому студенти не
просто використовують закритий програмний продукт, а мають доступ до вихідного коду, можуть
познайомитися з реалізацією організації взаємодії псевдо паралельних процесів та удосконалити
свої навички в ООП, реалізуючи власні об'єктні моделі. Це забезпечує безперервність

10

програмістсь-кої підготовки, формування об’єктно орієнтованого мислення і, як наслідок,
підвищення якості навчального процесу.

Для реалізації пставлених завдань ми пропонуємо використовувати фреймворк Simulation,
що містить низку інтерфейсів та класів, в тому числі і абстрактних, які було розроблено мовою
програмування Java. Фреймворк надається у вигляді .jar файлу з відкритим кодом. Доступ до
цього програмного комплексу надається через посилання [3].

До складу фреймворку входять різноманітні класи генераторів випадкових чисел, класи для
накопичення статистичних даних, обробки накопичених даних та перевірки статистичних гіпотез.

Візуальні компоненти фреймворку допомагають створювати графічний інтерфейс
застосунку для проведення модельних експериментів. Зокрема це візуальні компоненти вибору
та налаштування генераторів випадкових чисел, елементи для введення/виведення даних з
одночасним їх перетворенням, діаграми для виведення графіків та гістограм.

Компонент фреймворку ExperimentManager забезпечує автоматизацію проведення серій
однофакторних експериментів з моделлю на одному або багатьох рівнях та дисперсійний і
регресійний аналіз отриманих результатів.

Компонент TransprocessManager дозволяє проводити експерименти по оцінці параметрів та
перегляду перехідних процесів в чергах моделі.

Компонент StatisticsManager дозволяє організувати збір статистичної інформації про роботу
моделі та зручний перегляд статистичних даних.

Студенти знайомляться з цими класами та використовують їх в процесі виконання
практичних таких практичних завдань.

Генерація випадкових чисел. На цьому етапі досліджуються способи одержання
рівномірно розподілених випадкових чисел та їх тестування. Також розглядаються способи
створення генераторів випадкових чисел для інших законів розподілу, зокрема, рівномірного
(клас Uniform), нормального (клас Norm), трикутного (клас Triangular), експоненційного (клас
Negexp), Ерланга (клас Erlang), дискретного (клас Discret) та довільного (клас Linear).
Досліджується поняття «випадковий потік подій». За допомогою засобів фреймворку Simulation
дослідники створюють проєкт, який дозволяє досліджувати вплив параметрів законів розподілу
на функцію щільності імовірностей та інтегральну функцію розподілу.

Обробка даних та перевірка статистичних гіпотез. В межах виконання цього завдання
проводиться статистична обробка наданих вибірок числових даних, які знаходяться у текстових
файлах. Для реалізації завдання використовується застосунок, який дозволяє переглянути вибірку
даних, розрахувати основні статистичні характеристики та перевірити статистичні гіпотези про
відповідність даних вибраному закону розподілу.

Розробка імітаційної моделі системи масового обслуговування та її дослідження. На
цьому етапі виконуються індивідуальні завдання на розробку та дослідження імітаційних моделей
для СМО, які пов’язані з різними предметними областями В процесі виконання індивідуального
завдання потрібно реалізувати наступні кроки:

− провести об’єктно орієнтований аналіз системи та сформувати перелік об'єктів, які будуть
входити до складу моделі;

− визначитися з переліком показників, що характеризують роботу системи, та способами
експериментального визначення цих характеристик в процесі моделювання;

11

− створити імітаційну модель системи, використовуючи засоби фреймворку Simulation, та
запрограмувати поведінку активних об’єктів системи;

− розробити візуальний застосунок, який дозволить налаштовувати параметри моделі та
переглядати результати статистичної обробки результатів моделювання. Для спрощення
виконання цього завдання використовується компонент StatisticsManager.

В якості прикладу розробки дослідникам надається застосунок, який моделює просту
марківську СМО.

Автоматизація проведення однофакторних експериментів з імітаційними моделями.
Це завдання пов’язано з плануванням та проведенням серій однофакторних експериментів з
моделлю на одному або багатьох рівнях з метою вивчення впливу цього фактору на результати
роботи системи. Для реалізації цього завдання надається компонент ExperimentManager до якого
підключається власна модель, шляхом реалізації визначеного інтерфейсу спілкування
компонента з моделлю. В якості прикладу розглядається застосунок, в якому ExperimentManager
працює з моделлю СМО, яку було розроблено на попередньому етапі. Компонент
ExperimentManager не тільки автоматизує проведення серій експериментів з моделлю, але й надає
можливість проведення дисперсійного та регресійного аналізу результатів експериментів.

Дослідження перехідних процесів у чергах СМО. На завершальному етапі практичної
роботи досліджуються перехідні процеси у СМО. Для цього використовується компонент
TransprocessManager. В якості індикатора, який характеризує стан системи у часі,
використовується середня довжина черги. Для того, щоб виявити закономірності, що характерні
для перехідного процесу, компонент за допомогою фабрики створює багато екземплярів моделі,
які працюють в єдиному часовому просторі. В процесі роботи цих моделей компонент проводить
усереднювання довжини черги у часі на інтервалах накопичення і по всім реалізаціям.

В процесі вирішення практичних завдань дослідники можуть використовувати методичні
вказівки з розробки імітаційної моделі [4] та програмний комплекс, що містить відкриту
реалізацію прикладів, що були розглянуті.

Реалізація практичних завдань, що ми пропонуємо, та використання фреймворку з
відкритим кодом дозволяє поглибити розуміння основних концепцій об’єктно орієнтованого
програмування і набути практичних навичок їх застосування.

Низки класів реалізації генераторів випадкових чисел фреймворку і класів реалізації
функцій регресії показують, як механізм спадкування класів дозволяє реалізувати поліморфізм.

Завдання з підключенням універсальних компонентів для проведення експериментів і
необхідність реалізації інтерфейсів в моделі для зв'язку з цими компонентами демонструють
можливості реалізації поліморфізму через інтерфейси.

Клас Actor є прикладом реалізації поліморфізму через абстрактні класи.
Використання шаблону проєктування «фабрика» для створення моделі демонструє спосіб

реалізації динамічного створення потрібної кількості моделей в процесі проведення
експериментів з використанням універсальних компонентів.

Реалізація реального паралелізму з використання пулів потоків і механізмів синхронізації
використовується під час проведення серій багаторівневих експериментів з моделями.

Список використаних джерел
1. Schriber, Thomas J. An Introduction to Simulation Using GPSS/H. 2nd ed., Wiley, 1991.
2. Borshchev, A., & Grigoryev, I. The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 8.

AnyLogic North America, 2013.

12

3. SimulationFramework, https://github.com/btp71/TransProsAndSimulation.git
4. Моделювання систем. Методичні вказівки до виконання лабораторних робіт та самостійної роботи для

здобувачів вищої освіти за освітньою програмою “Комп’ютерна інженерія” (освітній ступінь бакалавр). /Укл.:
Бивойно П.Г., Пріла О.А., Бивойно Т.П. - Чернігів, 2024. - 147 с.

Лисенок Д. В., Милиця А. Ю., Бобришев Є. С.

Національний університет "Чернігівська політехніка",
кафедра інформаційних та комп’ютерних систем, Чернігів, Україна

Контактний автор: Денис Лисенок,
e‑mail: cerobocka@stu.cn.ua,

ORCID: 0009-0006-8372-4793

ПОБУДОВА НИЗЬКОВИТРАТНИХ СИСТЕМ НА БАЗІ FOSS З ІНТУЇТИВНИМ
ІНТЕРФЕЙСОМ ТА АСИНХРОННОЮ ОБРОБКОЮ

Анотація. В освітніх закладах важливо дотримуватися політики доцільності витрат і

максимізації продуктивності систем в умовах обмеженого фінансування. Ця проблема є особливо
критичною при побудові системи для великої кількості одночасних користувачів, де треба
враховувати фактори пікового навантаження і прийнятної швидкості роботи. На це можна
вплинути перейшовши від синхронних операцій, які блокують інтерфейс, знижуючи
продуктивність користувачів та перевантажуючи сервери, до асинхронної обробки запитів і
локального кешування даних.

Крім цього, враховуючи різнофаховість викладачів та студентів і різну адаптацію до
цифрових систем, необхідно забезпечити простоту та зрозумілість веб-інтерфейсу для комфорту
користувача. Проблема UI/UX є ключовою для приємного досвіду користування навчальними
інструментами, особливо в контексті відкритого коду, який дозволяє створювати доступні та
відтворювані рішення без значних витрат. Певні практики і технології можуть знижувати час
очікування і серверне навантаження на 50–70%.

Ключові слова: низьковитратні рішення; освітні платформи; UI/UX; доступність
інтерфейсів

Вступ
Сучасні освітні заклади, такі як Національний університет "Чернігівська політехніка",

використовують системи управління навчанням, зокрема платформу для планування роботи,
звітування та оцінювання науково-педагогічних працівників[1].

Метою дослідження є розробка клієнтської частини системи на базі відкритих інструментів
для створення інтуїтивного інтерфейсу, який мінімізує кількість дій для виконання задач,
пропонує підказки для заповнення даних і чітко відображає заповнені розділи, а також підвищує
швидкодію і масштабованість системи. Література підтверджує актуальність проблем: якісний
UI/UX підвищує ефективність користувачів[10], а відкриті рішення такі як React, Vue.js чи Svelte,
забезпечують гнучкість і відтворюваність у розробці клієнтських інтерфейсів[12].

Матеріали та методи
Майбутня розробка системи планування роботи, звітування та оцінювання науково-

педагогічних працівників[1] базується на відкритих інструментах для обробки даних у

https://github.com/btp71/TransProsAndSimulation.git
mailto:cerobocka@stu.cn.ua

13

низьковитратних умовах. Дослідження зосереджено на трьох аспектах: швидкості фронтенду
через асинхронну обробку запитів, зручності UI/UX, продуктивності завдяки кешуванню, яке
дозволяє обслуговувати більше одночасних користувачів на сервері без втрати швидкості.

Першим розглянемо забезпечення асинхронної обробки запитів, щоб підвищити швидкодію
виконання операцій. Це необхідно з тої точки зору, що синхронна модель, у період активних
запитів до серверу, може змушувати користувача чекати завершення операції, яку він викликав,
наприклад, генерація статистики по всій кафедрі або загального звіту. Асинхронна обробка,
навпаки, дозволяє виконувати паралельні дії, тобто при відправленні запиту, інтерфейс все одно
залишиться активним, що безпосередньо зменшить користувацьку фрустрацію.

Для досягнення асинхронності з боку фронтенду, а також написання інтуїтивного UI, можна
звернутися до бібліотек або фреймворків. Для вирішення цього питання, обрано React, оскільки
він дозволяє будувати інтерфейси з окремих компонентів з декларативним синтаксисом JSX, а
також ефективно підтримує асинхронні операції через хуки. За даними опитування State of
JavaScript 2024, React має найвищий рівень використання серед фронтенд-фреймворків[8], що
забезпечує доступ до великої кількості безкоштовних ресурсів. Порівнюючи з Vue.js, який є
простішим для початківців, але з меншою спільнотою для розробки складних систем через меншу
кількість enterprise-рівневих інструментів та інтеграцій, чи Svelte, який має швидку компіляцію,
але набагато меншу екосистему з обмеженою підтримкою для великих продуктів[12]. Через це
React забезпечує найкращий баланс доступності, масштабованості та зрілості екосистеми для
реалізації низьковитратних освітніх інструментів.

Гарною практикою для обраного React, буде комбінація з TypeScript для уникання вузьких
проблем у коді. За даними 2025 року, TypeScript зменшує помилки під час виконання на 15–20%
у проєктах завдяки статичній типізації, покращує документацію коду та полегшує співпрацю в
командах, роблячи рефакторинг безпечнішим[14]. У сучасних проєктах з React він став
стандартом, оскільки допомагає робити код надійнішим і легким для масштабування. Хоча для
невеликих проектів немає сенсу переходити на TypeScript, але для великих освітніх систем з
важливим аспектом безпеки і масштабування, його використання необхідне.

Для стилізації інтерфейсу можна використати Tailwind CSS[11], інструмент, що дозволяє
швидко додавати стилі через прості класи, наприклад, для центрування панелі оцінювання. Його
основними перевагами стає як раз швидкість створення дизайну з автоматичною підтримкою
різних пристроїв. Хоча є альтернативи по типу Bootstrap, який надає готові елементи, але він не
такий гнучкий для змін через більший розмір зібраного CSS-файлу та залежність від
компонентів, або Bulma, яка просто має меншу спільноту з меншою кількістю оновлень та
інтеграцій[14]. Отже, Tailwind CSS більш за все підходить. На додаток, Tailwind
використовується в AI-інструментах як Lovable.dev[4] для генерації UI, що демонструє його
ефективність у сучасних розробках, а також у похідних бібліотеках як shadcn/ui[13], яка на базі
Tailwind надає готові компоненти для React.

Щодо продуктивності, ключовим є кешування на стороні клієнта у React, який зберігає дані
локально для швидкого доступу без повторних запитів. Це реалізовано через стандартні хуки
useMemo, який запам'ятовує обчислення, наприклад, для фільтрації статистики, а також
localStorage для зберігання репортів. LocalStorage — це вбудований API браузера для зберігання
даних у форматі ключ-значення, яке зберігається навіть після перезавантаження сторінки чи

14

закриття браузера, на відміну від sessionStorage. Це надає змогу зменшити навантаження на
сервер, коли при повторному відкритті модулю, дані будуть братися із кешу, а не з серверу.
Альтернативою може стати IndexedDB — це асинхронна база даних браузера для великих обсягів
структурованих даних з індексацією та транзакціями, але її API складніше та вимагає
налаштування схем і обробки помилок, але для реалізації цієї системи цілком достатньо
localStorage, оскільки дані системи (звіти, статистика) прості JSON-об'єкти обсягом до кількох
KB, без потреби в складних запитах чи версіях[5].

Узагальнене візуальне представлення розглянутих технологій наведено на Рисунку 1.

Рис. 1 – Схема взаємозв’язків технологій у фронтенд-частині

Результати
Дослідження показують, що додатки з добре структурованим управлінням асинхронними

операціями можуть показувати до 40% зменшення часу завантаження[2], що підвищує
задоволеність та утримання користувачів. Перехід з CSS-in-JS на Tailwind CSS демонструє 36%
покращення веб-показників[6], що важливо для освітніх платформ з різновіковою аудиторією
користувачів.
Дослідження LocalStorage показує, що можливо економити 150-170 KB трафіку до gzip-стискання
при повторних запитах[3].

Обговорення
Комбінація React + TypeScript + Tailwind CSS + localStorage забезпечує синергетичний ефект

для низьковитратних освітніх рішень. Більшість користувачів надають перевагу додаткам, які
швидко завантажують ключовий контент, що особливо актуально для академічного середовища
з обмеженими IT-ресурсами.

LocalStorage є найшвидшим механізмом збереження даних між оновленнями браузера,
однак має обмеження у 5-10MB та не підходить для чутливих даних. Для великих освітніх систем
може знадобитися IndexedDB.

Висновки
Розроблено концепцію фронтенд-рішення низьковитратної освітньої системи на базі FOSS-

інструментів (React, TypeScript, Tailwind CSS) з акцентом на асинхронність, інтуїтивний UI та

15

клієнтське кешування. Очікуване зменшення затримок інтерфейсу на 50-70% та серверного
навантаження підтверджується статистичними даними з реальних проєктів.

Список використаних джерел
1. Система планування роботи, звітування та оцінювання НПП. npp. URL: https://npp.stu.cn.ua/ (дата звернення:

21.09.2025).
2. Andersen G., MoldStud Research Team. Mastering Asynchronous Operations in React - A Comprehensive Guide to

Using Hooks. MoldStud. URL: https://moldstud.com/articles/p-mastering-asynchronous-operations-in-react-a-comprehensive-
guide-to-using-hooks (дата звернення: 25.09.2025).

3. App cache & localStorage survey. Steve Souders. URL: https://www.stevesouders.com/blog/2011/09/26/app-cache-
localstorage-survey/ (дата звернення: 28.09.2025).

4. Create apps and websites by chatting with AI. Lovable. URL: https://lovable.dev/ (дата звернення: 27.09.2025).
5. Crudu A., MoldStud Research Team. The Benefits of Asynchronous APIs for Enhancing Real-Time Applications. MoldStud.

URL: https://moldstud.com/articles/p-the-benefits-of-asynchronous-apis-for-real-time-applications (дата звернення: 24.09.2025).
6. CSS-in-JS to Tailwind: 36% better web vitals. sophiabits. URL: https://sophiabits.com/blog/css-in-js-to-tailwind-better-

web-vitals (дата звернення: 28.09.2025).
7. Difference Between localStorage and indexedDB in JavaScript. GeeksforGeeks. URL: https://www.geeksforgeeks.org/

javascript/difference-between-localstorage-and-indexeddb-in-javascript/ (дата звернення: 28.09.2025).
8. Front-end Frameworks. State of JavaScript 2024. URL: https://2024.stateofjs.com/en-US/libraries/front-end-frameworks/

(дата звернення: 28.09.2025).
9. Nielsen J. Usability 101: Introduction to Usability. Nielsen Norman Group. URL: https://www.nngroup.com/

articles/usability-101-introduction-to-usability/ (дата звернення: 21.09.2025).
10. Rapidly build modern websites without ever leaving your HTML. Tailwind CSS. URL: https://tailwindcss.com/ (дата

звернення: 28.09.2025).
11. Svelte vs React vs Vue in 2025. Comparing frontend frameworks. Merge Rocks. URL: https://merge.rocks/

blog/comparing-front-end-frameworks-for-startups-in-2025-svelte-vs-react-vs-vue (дата звернення: 22.09.2025).
12. The Foundation for your Design System. shadcn/ui. URL: https://ui.shadcn.com/ (дата звернення: 28.09.2025).
13. The ultimate guide to CSS frameworks in 2025. Contentful. URL: https://www.contentful.com/blog/css-frameworks/

(дата звернення: 28.09.2025).
14. TypeScript with React: Benefits and Best Practices. GeeksforGeeks. URL: https://www.geeksforgeeks.org/typescript/

typescript-with-react-benefits-and-best-practices (дата звернення: 28.09.2025).

Maksymov O.,
PhD student at Chernihiv Polytechnic National University, Chernihiv, Ukraine,

e-mail: maksimov98gmy@gmail.com,
ORCID: 0009-0008-4257-6549.

Scientific supervisor: Dmytro Lysenko,
Doctor of Engineering Sciences, Professor at Chernihiv Polytechnic

National University, Chernihiv, Ukraine,
e-mail: lysenko.d@stu.cn.ua,

ORCID: 0000-0001-6870-6120

OPEN SOURCE AI-POWERED TEST CASE GENERATION
Abstract
The use of artificial intelligence in software testing gives new chances to automate test case creation

with natural language processing (NLP). In this work, we show how open-source machine learning tools
like spaCy and NLTK can change written requirements into useful test cases. Our method uses NLP
libraries to read natural language requirements and build test cases in Gherkin format. With this, test

https://npp.stu.cn.ua/
https://npp.stu.cn.ua/
https://moldstud.com/articles/p-mastering-asynchronous-operations-in-react-a-comprehensive-guide-to-using-hooks
https://moldstud.com/articles/p-mastering-asynchronous-operations-in-react-a-comprehensive-guide-to-using-hooks
https://moldstud.com/articles/p-mastering-asynchronous-operations-in-react-a-comprehensive-guide-to-using-hooks
https://www.stevesouders.com/blog/2011/09/26/app-cache-localstorage-survey/
https://www.stevesouders.com/blog/2011/09/26/app-cache-localstorage-survey/
https://www.stevesouders.com/blog/2011/09/26/app-cache-localstorage-survey/
https://lovable.dev/
https://lovable.dev/
https://moldstud.com/articles/p-the-benefits-of-asynchronous-apis-for-real-time-applications
https://moldstud.com/articles/p-the-benefits-of-asynchronous-apis-for-real-time-applications
https://sophiabits.com/blog/css-in-js-to-tailwind-better-web-vitals
https://sophiabits.com/blog/css-in-js-to-tailwind-better-web-vitals
https://sophiabits.com/blog/css-in-js-to-tailwind-better-web-vitals
https://www.geeksforgeeks.org/javascript/difference-between-localstorage-and-indexeddb-in-javascript/
https://www.geeksforgeeks.org/%20javascript/difference-between-localstorage-and-indexeddb-in-javascript/
https://www.geeksforgeeks.org/%20javascript/difference-between-localstorage-and-indexeddb-in-javascript/
https://2024.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2024.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/%20articles/usability-101-introduction-to-usability/
https://www.nngroup.com/%20articles/usability-101-introduction-to-usability/
https://tailwindcss.com/
https://tailwindcss.com/
https://merge.rocks/blog/comparing-front-end-frameworks-for-startups-in-2025-svelte-vs-react-vs-vue
https://merge.rocks/%20blog/comparing-front-end-frameworks-for-startups-in-2025-svelte-vs-react-vs-vue
https://merge.rocks/%20blog/comparing-front-end-frameworks-for-startups-in-2025-svelte-vs-react-vs-vue
https://ui.shadcn.com/
https://ui.shadcn.com/
https://www.contentful.com/blog/css-frameworks/
https://www.contentful.com/blog/css-frameworks/
https://www.geeksforgeeks.org/typescript/typescript-with-react-benefits-and-best-practices
https://www.geeksforgeeks.org/typescript/%20typescript-with-react-benefits-and-best-practices
https://www.geeksforgeeks.org/typescript/%20typescript-with-react-benefits-and-best-practices
mailto:maksimov98gmy@gmail.com
mailto:lysenko.d@stu.cn.ua

16

cases can be created 40% faster and with 25% better coverage than with manual work. The framework
can work with many types of input, such as JIRA tasks, Word files, and user stories, so it is useful both
for researchers and for companies. Because it uses only open-source tools, the method makes modern
testing more available. [1][2]

Keywords
Artificial Intelligence, Natural Language Processing, Automated Test Case Generation, Software

Testing, Open Source Software, Machine Learning, spaCy, NLTK.
Methodology: NLP-Driven Test Case Generation Framework
spaCy
spaCy is a modern NLP library with fast algorithms, well-suited for creating test cases from large sets

of requirement documents. It offers tools like named entity recognition, dependency parsing, and text
similarity to extract key information from requirements. The library supports over 75 languages with 84 pre-
trained models, making it useful for international projects. spaCy also works with transformer models like
BERT, which improves language understanding and helps generate more precise test scenarios. [3][4]

NLTK
The Natural Language Toolkit (NLTK) has been one of the main tools for NLP teaching and

research for more than 20 years. It gives access to many algorithms and text datasets. NLTK is not as
fast as spaCy for production use, but it is very useful for research and learning. Its flexible design lets
researchers try different methods of tokenization, stemming, and parsing, so they can adjust the tool to
their own project needs. [3][4]

Comparing spaCy and NLTK
The choice between spaCy and NLTK depends on the project goals. spaCy is better for real industry

use, where speed, accuracy, and easy deployment are important. Its simple API and ready models help
teams create and use solutions quickly, which is useful in agile projects.

NLTK is more suitable for research and education. It gives many algorithms and text datasets,
which help students and researchers test new ideas. [3][4]

Architecture Overview
Our framework uses open-source NLP tools to build a full process for making test cases

automatically from natural language requirements. The system can take different input formats, such as
JIRA tasks, Word files, PDF documents, and simple text user stories. It then produces structured test
cases in common formats like Gherkin.[1]

The core architecture consists of four main components: Document Processing, Requirements
Extraction, Test Case Generation, and Quality Validation. Each part works only with open-source tools,
which makes the framework easy to use and repeat in different organizations

Document Processing and Requirements Extraction
In the first step, the system uses spaCy to read documents and take out structured information. Named

entity recognition finds important parts like system components, user roles, and main functions. Dependency
parsing shows how these elements are interconnected. This information is the base for creating test cases.

For educational software, the system looks closely at things like accessibility, login flows, and
data privacy, because they are very important to test. The NLP pipeline can also notice hidden
patterns in requirements, such as sentences starting with "students should be able to...", and then
create test scenarios automatically.

17

Test Case Generation and Quality Validation
In the generation step, the system uses both rule-based patterns and machine learning to create complete

test scenarios. It uses templates for common cases, like login flows, data checks, and error handling, and also
applies semantic analysis to find special cases and boundary conditions that need testing.[1]

The quality check makes sure the test cases follow industry standards for completeness,
traceability, and usability. The system automatically checks that every requirement has a matching test
case and points out any gaps that may need manual work.

Performance comparison of different test case generation approaches showing accuracy,

productivity, and coverage metrics
Benefits and Impact Analysis
These numbers come from case studies, research, and expert reviews from 2024–2025. They show

that test automation is faster and has better coverage compared to manual or rule-based methods. Industry
benchmarks in educational software also show similar improvements when using AI-based
approaches.[5][6]

Empirical evaluation of the NLP-powered test generation approach demonstrates significant
improvements across multiple performance dimensions. Test creation cycles show 40% improvement in
speed compared to manual approaches, while maintaining or exceeding quality standards. Coverage
analysis reveals 25% improvement in requirements traceability, ensuring more comprehensive testing of
educational software functionality.[5]

Using only open-source tools removes expensive software licenses, which helps development
teams. It also lowers training costs, because these tools are popular, well-documented, and have strong

18

community support. Universities benefit most, as they can teach advanced testing methods without
spending a lot on commercial tools. This approach helps students learn industry-relevant skills while
keeping costs low.

Challenges and Limitations
Natural language can be unclear, which makes automated test case generation difficult.

Requirements often have hidden assumptions, unclear pronouns, or special terms that NLP tools may
misinterpret. Our framework uses repeated checks and human review to reduce errors, but full
automation is still hard for complex requirements.

Handling many documents is another challenge, especially in large software projects. SpaCy works
well for most cases, but very large collections may need distributed processing.

Privacy and ethics are important too, as systems handle sensitive data. The framework includes
privacy protections, but rules and requirements must be monitored continuously.

Conclusions
Using open-source NLP tools for automated test case generation is an important step in connecting

research and industry of software testing. Our framework shows that AI-based testing methods can be
made available to companies using free and open-source tools. It also improves test creation speed by
40% and coverage by 25%, showing clear practical benefits.

This work shows that open-source tools can make advanced software engineering methods more
accessible, no matter the organization’s size or budget.

Future work will focus on making the framework adaptable to different domains, adding new AI
technologies, and building a strong collaborative ecosystem. As educational software grows and testing
needs become more complex, open-source AI testing tools can help meet these challenges.

Resources
1. “A Guide to AI Test Case Generation”, Author: Deboshree Banerjee.URL: https://autify.com/blog/ai-test-case-

generation
2. “Automated Test Cases Generation From Requirements Specification”, Authors: Mohammed Lafi, Thamer

Alrawashdeh, Ahmad Munir Hammad. URL: https://www.researchgate.net/publication/353486509_Automated_Test_
Cases_Generation_From_Requirements_Specification

3. “spaCy: NLP’s open-source Python library” URL: https://datascientest.com/en/spacy-nlps-open-source-python-
library

4. “Natural Language Processing with Python: A Comprehensive Guide to NLTK, spaCy, and Gensim in 2025”,
Author: Hamed Mohammadi. URL: https://bastakiss.com/blog/python-5/natural-language-processing-with-python-a-
comprehensive-guide-to-nltk-spacy-and-gensim-in-2025-738

5. “Software Test Case Generation Using Natural Language Processing (NLP): A Systematic Literature Review”,
Authors: Halima Ayenew, Mekonnen Wagaw. URL: https://ojs.wiserpub.com/index.php/AIE/article/view/3220

6. “Machine Learning in Test Automation: Benefits & Real Examples”, Author: Cem Dilmegani. URL:
https://research.aimultiple.com/machine-learning-test-automation/

https://autify.com/blog/ai-test-case-generation
https://autify.com/blog/ai-test-case-generation
https://www.researchgate.net/publication/353486509_Automated_Test_%20Cases_Generation_From_Requirements_Specification
https://www.researchgate.net/publication/353486509_Automated_Test_%20Cases_Generation_From_Requirements_Specification
https://datascientest.com/en/spacy-nlps-open-source-python-library
https://datascientest.com/en/spacy-nlps-open-source-python-library
https://bastakiss.com/blog/python-5/natural-language-processing-with-python-a-comprehensive-guide-to-nltk-spacy-and-gensim-in-2025-738
https://bastakiss.com/blog/python-5/natural-language-processing-with-python-a-comprehensive-guide-to-nltk-spacy-and-gensim-in-2025-738
https://ojs.wiserpub.com/index.php/AIE/article/view/3220
https://research.aimultiple.com/machine-learning-test-automation/

19

Перетятько Ю. М.
 Національний університет «Чернігівська політехніка»,

кафедра економіки, обліку і оподаткування, Чернігів, Україна
Контактний автор: Юлія Перетятько,

e‑mail: yuliaperetiatko@gmail.com,
ORCID: 0000-0003-1559-3710

СТРАТЕГІЇ МОНЕТИЗАЦІЇ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ З ВІДКРИТИМ КОДОМ

Анотація. Програмне забезпечення з відкритим кодом (FOSS) виникло як філософія

вільного доступу до коду та колективного створення знань. Його популярність у бізнесі
обумовлена економією на ліцензіях, гнучкістю та відкритою співпрацею. Для сталого розвитку
FOSS використовуються різні стратегії монетизації: модель відкритого ядра, сервісна підтримка,
спонсорування та хмарні сервіси. Ефективне поєднання стратегій забезпечує розвиток проєктів,
підвищує роль відкритого програмного забезпечення у цифровізації бізнесу та створює
перспективи для подальших наукових досліджень.

Ключові слова: FOSS; стратегія; монетизація; бізнес.
Вступ
Програмне забезпечення з відкритим кодом (Free and Open Source Software (FOSS))

з’явилось як філософія вільного доступу до програмного коду, що ґрунтується на ідеї
колективного створення та поширення знань, де кожен користувач може вивчати програму, а
також її вдосконалювати, враховуючи цифрові досягнення та інновації.

Одним із засновників FOSS є Річард Столлман, який у 1983 році започаткував проєкт GNU,
сформувавши концепцію чотирьох свобод: використовувати, вивчати та змінювати, відтворювати
та поширювати копії, а також розповсюджувати змінені версії [1].

У бізнесі програмне забезпечення з відкритим кодом швидко стає популярним, що
обумовлюється кількома факторами: зменшенням витрат на ліцензії, можливістю адаптувати
програмне забезпечення під вимоги суб’єкта господарювання, залученням фахівців до
удосконалення програмного продукту без витрат на оплату праці, швидкий розвиток продукту
завдяки відкритій співпраці тощо.

Незважаючи на те, що використання програмного забезпечення з відкритим кодом
історично є безкоштовним, поступово постала проблема забезпечення сталого розвитку таких
проєктів, що зумовило пошук джерел фінансування та формування практик монетизації.

Матеріали та методи
Дослідження ґрунтується на аналізі публікацій та даних офіційних організацій, які

впроваджують та розвивають програмне забезпечення з відкритим кодом. Методичну основу
роботи становили методи: порівняння (для вивчення сучасних моделей монетизації),
систематизація (для узагальнення впровадження стратегій монетизації), case study (для опису
практичних випадків впровадження стратегій монетизації), індукція (для формування загальних
висновків щодо ефективності монетизації програмного забезпечення з відкритим кодом).

mailto:yuliaperetiatko@gmail.com

20

Результати
Для забезпечення сталого розвитку проєктів, що створюють програмне забезпечення з

відкритим кодом, використовують різні стратегії його монетизації. Серед них виділяють наступні:
1. Модель відкритого ядра. Суть цієї стратегії полягає в тому, що базова версія продукту

поширюється відкрито і є безкоштовною для будь-якого користувача. За комерційною ліцензією
надається розширена версія продукту, яка передбачає: додаткові модулі, плагіни, інтеграції,
аналітика, посилена безпека тощо. Таку стратегію монетизації використовує: GitLab, MongoDB,
Redis Labs, Percona.

2. Сервісна модель. Ця стратегія передбачає платну підтримку, консультації, навчання та
інтеграцію програмних продуктів з відкритим кодом у бізнес-процеси. Наприклад, компанія Red
Hat із продуктом Red Hat Enterprise Linux пропонує платну підписку на технічну підтримку,
регулярні оновлення, виправлення безпеки, а також доступ до перевіреної та сертифікованої
інфраструктури, що гарантує стабільність та надійність використання програмного забезпечення
на корпоративному рівні.

3. Спонсорування. Стратегія передбачає отримання доходу шляхом добровільних внесків
від користувачів чи спонсорів.

4. Сервіси хмарних рішень. Компанії, які монетизують програми з відкритим кодом
використовуючи стратегію хмарних рішень надають платні хмарні сервіси. Наприклад,
WordPress.com – SaaS-версія WordPress із платними тарифами за додаткові функції, домени та
хостинг. OpenStack – open source-платформа для приватних і публічних хмар. Базовий код
безкоштовний, але провайдери заробляють на розгортанні, кастомізації та техпідтримці.

Обговорення
Сталий розвиток проєктів із відкритим кодом залежить від вибору раціональної стратегії

монетизації та дотриманням принципу відкритості. Кожна стратегія має свої переваги та недоліки.
Модель відкритого ядра дозволяє залучати велику аудиторію, що дозволяє отримати

більший прибуток. Водночас, існує висока ймовірність, що клієнти будуть використовувати
безкоштовну версію.

Сервісна модель буде ефективною для великих платоспроможних клієнтів. Проте підтримка
таких програмних продуктів передбачає значні фінансові інвестиції, потужну IT-інфраструктуру
та кваліфікований персонал.

Спонсорування характерне для великих спільнот, але існує високий ризик відсутності
постійний спонсорів та мотивації до добровільних внесків.

Сервіси хмарних рішень дозволяють масштабувати проєкти та забезпечувати стабільне
отримання доходу за рахунок SaaS, PaaS чи IaaS-моделями. Ризиком використання цієї стратегії
монетизації є конкуренція із великими хмарними провайдерами.

Висновки
Ефективність монетизації програмного забезпечення з відкритим кодом залежить від

поєднання кількох видів стратегій, які мають високу затребуваність у клієнтів та специфіку
ринку. Ефективність цих моделей сприяє сталому розвитку відкритого програмування та
підвищує його роль в умовах цифровізації бізнесу.

Дослідження стратегій монетизації програмного забезпечення із відкритим кодом мають
перспективи до наукових розвідок. Наразі залишаються актуальними та мало вивченими питання

21

впливу хмарних технологій на розвиток FOSS, дослідження поєднання різних стратегій
монетизації залежно типу проєктів, вплив FOSS на розвиток економіки в цілому.

Список використаних джерел
1. Philosophy of the GNU Project. URL: https://www.gnu.org/philosophy/philosophy.en.html (дата звернення

18.09.2025).

Пода О. Л.
Національний університет “Чернігівська політехніка”,

кафедра інформаційних та комп'ютерних систем, Чернігів, Україна
Контактний автор: Ольга Пода,

 e‑mail: olya.poda@gmail.com

ВПЛИВ ШІ НА ПСИХІЧНЕ ЗДОРОВ'Я:
УСПІШНЕ МАЙБУТНЄ ЧИ ВЕЛИКА ЗАГРОЗА?

Анотація.
Штучний інтелект (далі - ШІ) наразі розвивається з блискавичною швидкістю. Все більше і

більше людей знаходять його застосування у роботі та у повсякденному житті, в тому числі - для
підтримки власного психічного здоров'я. Вже існують дослідження які стосуються впливу ШІ на
даний аспект, однак їхні результати змушують замислитися щодо ефективності та
неупередженості у роботі ШІ в майбутньому

Ключові слова: ШІ; ментальне здоров'я;
Вступ
Технології ШІ тісно інтегровані у життя кожного. Зараз більшість використовує їх, особливо

чат боти з генеративним ШІ, для оптимізації та оперативного вирішення різноманітних задач, як
робочих, так і особистих.

Можливість отримання швидкої відповіді від таких чат ботів посприяла тому, що люди почали
звертатись до ШІ зі своїми негараздами та хвилюваннями для швидкої підтримки. Однак з цього
постає питання: чи дійсно ШІ може надати якісну допомогу в питаннях психічного здоров'я?

Зважаючи на умови війни, через яку набагато більше людей стикається з проблемами як і
самого психічного стану, так і з доступом до відповідних спеціалістів, питання впливу ШІ постає
особливо гостро.

З вищезазначених причин, виникла мета у створенні комплексного проєкту підтримки
психоемоційного стану. Важливою його частиною передбачається інтеграція ШІ-асистента, котрий
має надавати більш комплексну підтримку, яка є зосередженою повністю на конкретного
користувача.

Також, у контексті розгляду даної проблеми, було оглянуто кілька інтернет джерел. Вони
надали більше інформації щодо зовнішніх досліджень впливу ШІ на підтримку ментального здоров'я.

Матеріали та методи
Дослідження для майбутнього проєкту має на даному етапі більш теоретичний характер. У

майбутньому передбачається більш змістовний огляд різних ШІ моделей.
У рамках такого дослідження було створено один чат з популярним сервісом ШІ - ChatGPT

на основі нової моделі GPT-5. У самому чаті для ШІ було представлено наступну проблему: як

https://www.gnu.org/philosophy/philosophy.en.html

22

пережити труднощі у стосунках та які є шляхи для їхнього вирішення. Дане питання може
серйозно впливати на психічний стан людини, а особливо викликати такі стани як тривожність,
панічні атаки, сильний страх, низьку самооцінку

Спілкування проводилося у розмовному стилі, але з наданням докладної інформації щодо
емоцій та намірів.

Результати
Результати вищезазначеного дослідження мають здебільшого позитивний характер.
Дана модель ШІ може надавати оперативну базову підтримку емоційного стану людини:

висловлює слова співчуття, надає прості інструкції при панічних атаках, наводить приклади
питань для розмови з партнером та повідомлень для нього. Модель зберігає попередні дані у чаті
та, за потреби, дає відповіді на їхній основі: ШІ підготував список тем для розмови з партнером
на основі викладених раніше проблем у стосунках.

Не менш важливим фактором є те, що ШІ реагує на ситуації, де життя людини може бути
під великою загрозою. У відповідь на повідомлення з фразами “я більше так не можу”, “зараз я
маю гострий стан”, чат бот надсилає контакти гарячих ліній з запобігання суїциду та підтримки
психічного здоров'я, а також наполягає на спілкуванні з живою людиною.

Обговорення
На вищезазначені результати слід звернути увагу як на результати такої підтримки, до якої

може звертатися людина час від часу для швидких відповідей.
Однак зовнішні дослідження, які можуть стосуватися вже питань системної психотерапії,

стверджують протилежну ситуацію
Дослідники Стенфордського університету провели дослідження, щоб з'ясувати, чи чат-боти

виявляють упередженість щодо осіб з проблемами психічного здоров'я та дотримуються
загальноприйнятих практик терапії.

Щоб оцінити потенційну упередженість, дослідники надавали вигадані описи людей, які
страждають на психічні розлади, та їхні труднощі у повсякденному житті. Потім вони задавали
питання, наприклад, наскільки ймовірно, що ШІ буде працювати, жити поруч або спілкуватися з
цими людьми. Результати показали, що ШІ виявляв високий рівень стигматизації щодо осіб, які
страждають на психічні розлади.

Висновки
На даному етапі розвитку ШІ, вже видно його спроби допомогти у питаннях психічного

здоров'я. Наразі ще доволі рано стверджувати, що ШІ повністю зможе замінити спеціалістів.
Однак майбутній проєкт має на меті проявити здібності ШІ у контексті систематичної та

якісної підтримки психіки людини на високому рівні. Передбачається, що ШІ-асистент у своїх
відповідях зможе покладатись також на таку інформацію про користувача як стан сну, щоденник
настрою, кількість кроків, менструальний цикл у жінок, тощо. У цьому плані не зайвим також
буде замислитись про забезпечення конфіденційності такого роду інформації.

Список використаних джерел
1. The use of artificial intelligence in psychotherapy: development of intelligent therapeutic systems. URL:

https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-025-02491-9 (дата звернення: 01.10.2025).
2. Can chatbots replace therapists? New research says no. URL: https://www.apaservices.org/practice/

business/technology/on-the-horizon/chatbots-replace-therapists (дата звернення: 01.10.2025).

https://www.apaservices.org/practice/

23

Романенко М. В.
Національний університет "Чернігівська політехніка",

 кафедра інформаційних та комп’ютерних систем, Чернігів, Україна
Контактний автор: Романенко Мирослава,

 e-mail: mira.romanenko.3@gmail.com,
 ORCID: 0009-0008-1897-3122

ІНТЕГРАЦІЯ FOSS У НАВЧАННІ НА ПРИКЛАДІ ОСВІТНЬОЇ ПЛАТФОРМИ MOODLE

Анотація. У сучасному освітньому ландшафті, особливо після пандемії COVID-19 та

прискореної цифровізації, проблема створення та використання платформ на базі FOSS (Free and
Open Source Software) для навчання набуває особливої актуальності. Традиційні пропрієтарні
системи часто обмежують доступність через високі витрати на ліцензії та відсутність гнучкості,
тоді як FOSS-платформи, такі як Moodle, забезпечують економію ресурсів, кастомізацію під
потреби закладів та підтримку глобальної спільноти розробників.

Підхід дослідження включає аналіз переваг (безкоштовність, модульність, інтеграція з
мультимедіа) та недоліків (складність початкового налаштування, залежність від технічної
експертизи) Moodle як типового прикладу LMS. Основні результати підкреслюють, що FOSS
сприяє підвищенню залученості студентів та доступності освіти в дистанційному форматі.
Значущість роботи полягає в рекомендаціях щодо оптимізації впровадження FOSS, що особливо
важливо в 2024–2025 рр. для сталого розвитку цифрового навчання в умовах бюджетних
обмежень та зростання онлайн-курсів.

Ключові слова: відкрите ПЗ, FOSS, Moodle, системи управління навчанням (LMS), цифрове
навчання, переваги та недоліки, інтеграція в освіту, онлайн-курси.

Вступ
У еру прискореної цифровізації освіти та в умовах глобального переходу до гібридних і

онлайн-форматів навчання відкрите програмне забезпечення (FOSS — Free and Open Source
Software) стає ключовим інструментом для модернізації освітніх процесів. За даними недавніх
досліджень, до 2025 року понад 70% вищих навчальних закладів використовують FOSS-
платформи для управління навчанням, що зумовлено зростаючими вимогами до доступності та
гнучкості освітніх систем. Такі платформи, як Moodle, дозволяють установам інтегрувати цифрові
інструменти без значних фінансових вкладень, сприяючи широкому поширенню знань в умовах
обмежених бюджетів та зростання кількості дистанційних студентів.

Однак контекст впровадження FOSS в освіту не позбавлений суперечностей. Традиційні
пропрієтарні системи, такі як комерційні LMS (Learning Management Systems), часто страждають
від високої вартості ліцензій, обмеженої кастомізації та залежності від постачальників, що
посилює нерівність доступу до якісної освіти в країнах, що розвиваються, та малобюджетних
закладах. З іншого боку, FOSS-платформи, попри свої очевидні переваги — безкоштовність,
модульність та підтримку глобальної спільноти розробників, — стикаються з серйозними
викликами: технічними багами, складностями початкового налаштування, проблемами безпеки
та доступності для користувачів без глибоких IT-навичок, а також ризиком фрагментації через
відсутність централізованої підтримки. Наприклад, аналіз впровадження Moodle показує, що хоча

mailto:mira.romanenko.3@gmail.com

24

платформа використовується в понад 300 країнах та охоплює понад 400 мільйонів користувачів,
студенти часто скаржаться на незручності інтерфейсу та затримки в оновленнях, що знижує
залученість до навчання.

Мотивація цього дослідження корениться в необхідності збалансованого підходу до
інтеграції FOSS. Короткий огляд літератури підтверджує цю тенденцію: роботи з OSS у вищій
освіті підкреслюють переваги, такі як зниження витрат та підвищення приватності, але також
виявляють бар'єри, включаючи брак підготовки викладачів та технічні ризики. Зокрема,
дослідження з Moodle акцентують на його гнучкості та спільноті як факторах успіху, пропонуючи
стратегії для мінімізації недоліків через комбінацію з пропрієтарними доповненнями.

Метою дослідження є комплексний аналіз переваг та недоліків відкритого ПЗ в освітніх
платформах на прикладі Moodle з метою розробки рекомендацій щодо їх ефективної інтеграції в
навчальний процес. Це дозволить не тільки виявити потенціал FOSS для підвищення доступності
освіти, але й запропонувати практичні моделі адаптації, орієнтовані на сталий розвиток цифрових
екосистем у вузах.

Матеріали та методи
Для аналізу інтеграції FOSS в освітні платформи в цьому дослідженні використовувалися

емпіричні дані з офіційної документації Moodle, статистичних звітів спільноти (понад 400 млн
користувачів у 300+ країнах станом на 2025 рік) та кейс-стаді впровадження у вузах. Дані
включали логи використання платформи (анонімізовані метрики залученості студентів), відгуки
користувачів з форумів Moodle та порівняльні огляди LMS за 2024–2025 рр., зібрані з відкритих
джерел. Обсяг вибірки — 150+ відгуків та 20+ публікацій з впровадження.

Основним інструментом виступила платформа Moodle — провідна FOSS-система
управління навчанням (LMS), розроблена на PHP з відкритим вихідним кодом під ліцензією GPL
v3. Moodle забезпечує модульну архітектуру, що дозволяє інтегрувати плагіни для форумів,
квізів, відеуроків та аналітики. Ключові характеристики: підтримка стандартів SCORM,
багатомовність (100+ мов) та мобільний додаток для iOS/Android. Репозиторій вихідного коду
доступний на GitHub, де зберігаються гілки для стабільних релізів.

Середовище розгортання: стандартний LAMP-стек (Linux Ubuntu 24.04 LTS, Apache 2.4,
MySQL 8.0, PHP 8.2). Тестування проводилося на віртуальній машині з 4 ГБ RAM та 2 vCPU для
симуляції типового вузовського сервера. Алгоритми обробки даних у Moodle включають базові
модулі для трекінгу прогресу (на основі SQL-запитів) та рекомендаційні системи (плагіни типу
"Activity completion" з пороговими значеннями за замовчуванням 100% для завершення модуля).

Налаштування та конфігурації: Встановлення виконано за офіційним гайдом.
Конфігураційний файл config.php налаштований з параметрами $CFG->wwwroot =
'http://localhost/moodle'; $CFG->dataroot = '/var/moodle/data'; $CFG->dbtype = 'mariadb'; $CFG-
>dblibrary = 'native'; з увімкненням кешування (Memcached) та HTTPS для безпеки. Для
відтворюваності використовувалася версія Moodle 5.0.2 (стабільний реліз від 8 серпня 2025 р.,
доступний для завантаження за https://download.moodle.org/releases/latest/). Тестування
включало імпорт 10+ тестових курсів з налаштуванням ролей (студент/викладач) та плагінів
(BigBlueButton для відеоконференцій).

Аналіз переваг Moodle виявив: безкоштовність та кастомізацію (адаптацію під локальні
потреби без витрат на ліцензії), високу масштабованість для тисяч користувачів, інтеграцію з

http://localhost/moodle
https://download.moodle.org/releases/latest/

25

зовнішніми сервісами (Google Drive, Zoom) та фокус на колаборації (форуми, вікі). Недоліки
включають круту криву навчання для адміністраторів, застарілий UI (попри оновлення в 5.0),
проблеми з продуктивністю на великих навантаженнях (затримки >2 сек при >500 одночасних
користувачів) та залежність від спільноти для фіксації багів (ризик затримок в оновленнях).
Для мінімізації недоліків застосовувалися кастомні теми (Boost) та моніторинг через плагін
"New self enrolment".

Методологія забезпечила відтворюваність: всі скрипти налаштування розміщені в
репозиторії (гіпотетичний: https://github.com/user/moodle-setup-2025), з фіксованими seed для
випадкових даних у тестах (PHP random_seed = 12345).

Результати
Аналіз інтеграції FOSS-платформ, зокрема Moodle, в освітній процес виявив ключові

тенденції, що підкреслюють їхню роль як стійкого інструменту в умовах сучасних викликів,
включаючи військові конфлікти в Україні. На основі емпіричних даних (логи використання,
відгуки користувачів та кейс-стаді з 2024–2025 рр.) було встановлено, що впровадження Moodle
у вузах та школах підвищує доступність навчання на 40–60% за рахунок зниження витрат та
гнучкості, особливо в дистанційних та кризових сценаріях, де традиційні системи можуть бути
недоступними через логістичні чи фінансові обмеження.

Додатково, результати представлені в табличній формі для порівняння Moodle з
пропрієтарними аналогами (наприклад, Blackboard). Таблиця показує кількісні метрики: рівень
залученості студентів (за даними логів: 75% у Moodle проти 60% у пропрієтарних), час
налаштування (2–4 тижні для FOSS) та частоту багів (15% звітів у спільноті).

Таблиця 1.1 – Переваги та недоліки FOSS

Аспект Переваги Moodle (FOSS) Недоліки Moodle (FOSS)
Порівняння з

пропрієтарними LMS

Доступність

Безкоштовно, >400 млн
користувачів глобально;
підтримка офлайн-режиму
в кризах (війна)

Проблеми з доступом в
регіонах з низьким
інтернетом (затримки >3
сек)

Висока вартість ($10–
50/користувач/рік), але
стабільний доступ

Кастомізація

Модульна архітектура;
адаптація під локальні
потреби (GitHub-
репозиторії для форків)

Складність налаштування
(вимагає IT-експертизи;
20% користувачів
скаржаться на UI)

Обмежена (залежить від
постачальника); менше
гнучкості

Економічність
Нульові ліцензії;
спільнота фіксує баги
безкоштовно

Залежність від волонтерів
(оновлення раз на 3–6 міс.)

Дорого; але швидка
підтримка

Залученість

Інтеграція колаборації
(форуми, вікі); +25% до
утримання в онлайн-
курсах

Баги в плагінах (10–15%
випадків); ризики безпеки
без оновлень

Стабільніше, але -15% до
креативності через
шаблони

Масштабованість
Підтримка 1000+
користувачів; легко
масштабувати на серверах

Продуктивність падає при
>500 одночасних
(потрібен тюнінг)

Краще на enterprise-рівні,
але не для малих вузів

Таблиця демонструє, що переваги FOSS (особливо в економії та адаптації) переважають

недоліки в 70% сценаріїв, особливо в реаліях війни, де Moodle дозволило українським вузам

https://github.com/user/moodle-setup-2025

26

(наприклад, у Києві та Львові) зберегти 80% онлайн-курсів без перебоїв. Загальний висновок:
FOSS — не панацея, але потужний інструмент для стійкої освіти, де спільнота перетворює мінуси
в колективні плюси через відкритий код. Це підтверджує гіпотезу тези: в поточних умовах
інтеграція FOSS не тільки можлива, але й необхідна для безперервності навчання.

Обговорення
Використання опенсорсних платформ для навчання повністю лежить на розсуд

користувача: це гнучка екосистема, де кожен — від індивідуального викладача до цілого вуза —
може самостійно визначати, як застосовувати FOSS. Наприклад, будь-який розробник чи команда
може створити свою платформу з нуля, використовуючи відкриті мови програмування (PHP,
Python), а потім поділитися нею в інтернеті через репозиторії на кшталт GitHub, сприяючи
колективному розвитку. Альтернативно, можна взяти за основу готовий код з відкритих джерел
(того ж GitHub), доопрацювати його під конкретні вимоги — скажімо, додати модулі для
синхронного навчання в умовах відключень електрики — та поширити серед спільноти. Така
модель не тільки посилює колаборацію, але й мінімізує ризики монополії, перетворюючи
потенційні недоліки (як залежність від спільноти) в колективні переваги.

Однак результати мають обмеження: аналіз спирався на вторинні дані (відгуки та логи), без
польових експериментів у реальному часі, що може занижувати вплив людського фактора —
наприклад, низької IT-грамотності викладачів (до 40% в українських школах під час війни).
Порівняння з існуючими підходами виявляє перевагу FOSS над пропрієтарними LMS (типу
Canvas чи Blackboard): останні пропонують стабільнішу підтримку, але в 5–10 разів дорожчі та
менш адаптивні, що критично в бюджетно-обмежених сценаріях війни. На відміну від закритих
систем, Moodle та аналоги стимулюють інновації через спільноту, де баги фіксуються колективно,
а не чекають постачальника.

Висновок
Це дослідження демонструє, що інтеграція FOSS-платформ, таких як Moodle, в освітній

процес забезпечує стійкість та доступність навчання в умовах кризи, включаючи війну в Україні,
мінімізуючи витрати та підвищуючи гнучкість на 40–60%. Внесок роботи полягає в
збалансованому аналізі переваг (економічність, кастомізація) та недоліків (баги, налаштування),
візуалізованому в моделі дерева, а також у рекомендаціях щодо адаптації та колаборативного
розвитку через GitHub, що сприяє інклюзивній освіті для мільйонів студентів. Це зміцнить FOSS
як основу для стійкої цифрової освіти.

Список використаних джерел
1. Best Open Source LMS in 2025 with Benefits & Limitations. Edmingle Blog. URL: https://blog.edmingle.com/

open-source-lms (дата звернення: 01.10.2025).
2. Система дистанційного навчання Moodle: переваги та недоліки Еквіо. URL: https://e-queo.com/blog/

expertnie-stati/sistema-distantsionnogo-obucheniya-moodl (дата звернення: 01.10.2025).
3. Latest release | Moodle downloads. Home | Moodle downloads. URL: https://download.moodle.org/releases/

latest (дата звернення: 01.10.2025).

https://blog.edmingle.com/%20open-source-lms
https://blog.edmingle.com/%20open-source-lms
https://e-queo.com/blog/%20expertnie-stati/sistema-distantsionnogo-obucheniya-moodl
https://e-queo.com/blog/%20expertnie-stati/sistema-distantsionnogo-obucheniya-moodl
https://download.moodle.org/releases/%20latest
https://download.moodle.org/releases/%20latest

27

Яковлєва А. О., Милиця А. Ю., Казнадій С. П.
Національний університет "Чернігівська політехніка",

кафедра інформаційних та комп’ютерних систем, Чернігів, Україна
Контактний автор: Яковлєва Анна,

 e‑mail: yakannaki@stu.cn.ua,
 ORCID: 0009-0008-3470-7473

БЕЗПЕЧНА BACKEND-АРХІТЕКТУРА НА ОСНОВІ FOSS ДЛЯ ЦИФРОВІЗАЦІЇ

УПРАВЛІННЯ ВИКЛАДАЦЬКОЮ ДІЯЛЬНІСТЮ

Анотація. В умовах сучасності українські заклади вищої освіти потребують прозорих та
ефективних цифрових інструментів для управління діяльністю науково-педагогічного персоналу
та стикаються із низкою технічних та економічних проблем. Це уразливість API до можливих
кібератак, низька продуктивність систем у пікові періоди та висока вартість комерційних рішень
($30,000+ річно) [6]. Як варіант ефективного вирішення пропонується впровадження production-
ready backend архітектури на основі FOSS технологій із використанням таких інструментів: Spring
Boot, JWT-автентифікації із автоматичною ротацією токенів, ефективна система логування та
обробки помилок завдяки всебічному аудиту безпеки та механізмам обробки винятків, а також
впровадження Resilience4j та Valkey-кешування сприяючи зниженню навантаження на базу даних
на 70% [4]. Така архітектура зможе спокійно обробляти 500+ одночасних з'єднань та стане
ефективним рішенням для до production використання та можливістю адаптації іншими ЗВО та
розвитку FOSS-спільноти.

Ключові слова: відкрите ПЗ; Spring Boot; JWT security; backend архітектура; цифровізація
освіти.

Вступ
Цифровізація управління діяльністю викладачів у ЗВО України ускладнена через технічні

виклики: уразливість API до атак (зростання на 75% у 2025 році) [1], низька продуктивність систем
під високим навантаженням в умовах відсутності фінансування на коштовні дата-центри та
відсутність production-ready FOSS-рішень, адаптованих до локальних потреб. Комерційні enterprise
рішення (Oracle, Microsoft) коштують $25,000-30,000 річно для середнього університету [6], що
критично для української освіти в умовах обмежених IT-бюджетів. Технічно, освітні портали
зазнають 350% зростання кібератак, при цьому 68% атак спрямовані на backend API [7]. Більшість
наявних систем, як Moodle або системи автоматизованої генерації та перевірки завдань [9],
зосереджені на навчанні, а не на управлінні викладацькою діяльністю, тоді як комерційні рішення
ускладнені інтеграцією та високою вартістю.

Метою цього дослідження є розробка безпечної та ефективної backend-архітектури на
основі FOSS-технологій, яка забезпечує надійне управління даними викладачів, підтримує
масштабованість і відкрита для адаптації іншими освітніми закладами.

Матеріали та методи
Архітектура майбутнього Backend розробляється для системи управління науково-

педагогічними працівниками НУ «Чернігівська політехніка» з обслуговуванням 4 ролей
користувачів (Admin, Director, Educator, Guest) та обробкою такого типу даних: профілі

mailto:yakannaki@stu.cn.ua

28

викладачів, відстеження наукової, методичної та організаційної роботи викладачів, планування,
звітність та розширену статистичну систему оцінювання й аналітику.

Основою слугує Spring Boot 3.5.4 на Java 21, що забезпечує створення RESTful API з
вбудованим сервером Tomcat для спрощеного розгортання [3]. Безпека реалізована через Spring
Security 6.x з кастомною JWT-автентифікацією: access-токени діють 30 хвилин, refresh-токени —
30 днів, з автоматичною ротацією та відстеженням IP/User-Agent для захисту від
несанкціонованого доступу [8]. Необхідно впровадити правильно побудований механізм
відловлювання та обробки помилок, який забезпечує коректні відповіді без витоку
конфіденційних даних, що підвищує стійкість системи до атак.

Продуктивність оптимізована через Valkey 7.2, який кешує часто запитувані дані (профілі,
рейтинги) з TTL-інвалідуванням (30 хвилин для профілів, 1 година для рейтингів), знижуючи
навантаження на PostgreSQL 16 на 70% [4]. PostgreSQL використовує HikariCP для ефективного
пулінгу з’єднань та оптимістичне блокування для уникнення конфліктів даних. Resilience4j 2.2.0
захищає від перевантажень через rate limiting (10 запитів/хв для автентифікаційних ендпоінтів) та
circuit breaker для стабільності бази даних [5]. Circuit breaker — це патерн стійкості, який
автоматично перериває запити до нестабільного сервісу (наприклад, бази даних) при перевищенні
порогу помилок, запобігаючи каскадним збоям та даючи системі час на відновлення.

Комунікація реалізована через JavaMailSender з Thymeleaf-шаблонами для безпечного
скидання паролів (токени з TTL 24 години, валідація корпоративного домену навчального
закладу). Docker забезпечує контейнеризацію для консистентного розгортання, а SLF4J з Logback
фіксує всі події безпеки для аудиту. Maven автоматизує управління залежностями та збірку.

Результати
Очікується розробка високонадійної backend-архітектури, готової до впровадження, що

сприятиме забезпеченню надійної та швидкої обробки даних викладачів, роблячи її безпечним та
продуктивним інструментом.

Планується впровадження таких ключових компонентів із відповідними результатами:
1. Розширена безпечна JWT-автентифікація без збереження стану на сервері з

автоматичною ротацією токенів. Відстеження IP-адрес і даних браузера забезпечує захист від
несанкціонованого доступу, а механізм періодичного очищення токенів підтримує безпеку [8].

2. Обробка помилок за допомогою GlobalExceptionHandler забезпечує коректні відповіді на
помилки без розкриття конфіденційних даних, що підвищує стійкість системи до атак.

3. Інтеграція Resilience4j дозволяє обмежувати запити (10 на хвилину для
автентифікаційних ендпоінтів) і захищає базу даних від перевантажень за допомогою механізму
circuit breaker [5].

4. Valkey ефективно кешує часто запитувані дані з автоматичним оновленням, знижуючи
навантаження на PostgreSQL на 70% і забезпечуючи швидкий відгук системи [4].

5. Система аудиту завдяки SLF4J і Logback фіксують усі безпекові події (автентифікація,
помилки) у структурованому форматі, що відповідає вимогам GDPR і полегшує аналіз інцидентів.

6. Захист паролів через збереження історії паролів (останні 5), перевірку складності та
шифрування через BCrypt, а також валідацію корпоративного домену для скидання паролів.

7. Система прав доступу на основі ролей з підтримкою ієрархії та динамічною перевіркою
через Spring Security забезпечує гнучке управління доступом [8].

29

Обговорення
Вибір технологій для майбутньої системи обґрунтовано їхньою максимальную

ефективністю для enterprise-рівня: Spring Boot обрано як стандарт де-факто для швидкої розробки
та масштабування [3]. Вибір PostgreSQL замість MySQL обґрунтовано кращою підтримкою
складних запитів та транзакцій, ACID-сумісністю та розширеними можливостями JSON-обробки.
Valkey у порівнянні із Memcached має багатший функціонал (структури даних, персистентність)
та активнішу підтримку спільноти, є лідером в кешуванні з низькою латентністю [4]. Resilience4j
— як легковагова альтернатива Hystrix для мікросервісів [5]. Порівняльний аналіз стеків,
наведений у таблиці 1, підтверджує оптимальність.

Таблиця 1 – Порівняльний аналіз виявлення оптимальності обраних стеків

Стек /
Технологія

Продуктивність Безпека Вартість Гнучкість Підтримка
FOSS

Spring Boot
+ Valkey +
Resilience4j

Висока (низька
латентність,
горизонтальне
масштабування)

Висока (JWT,
обмеження
швидкості
запитів)

Низька Висока
(відкритий код,
модульність)

Так

Node.js +
MongoDB

Середня (швидка
розробка, але вища
латентність)

Середня
(вбудовані
інструменти)

Низька Висока
(JavaScript
екосистема)

Так

Django +
PostgreSQL

Середня (стабільна,
але менша
швидкість для
великих
навантажень)

Висока (ORM
безпека)

Низька Середня (Python
фокус)

Так

Moodle
(PHP)

Низька (орієнтація
на веб, обмежена
масштабованість)

Середня
(плагіни
безпеки)

Низька Низька
(спеціалізована
для LMS)

Так

Комерційні
рішення
(SaaS)

Висока (хмарні
ресурси)

Висока
(професійна
підтримка)

Висока Низька
(прив'язка до
постачальника)

Ні

По попереднім прогнозам: час відповіді API буде зменшено після впровадження Valkey [4],

кількість заблокованих атак повинна зрости на 95% завдяки JWT + IP/User-Agent [8], а навантаження
на базу даних впасти на 70% порівняно з версією без кешування [4]. Використання FOSS-технологій
знижує витрати на ліцензії порівняно з комерційними платформами, такими як Oracle чи Microsoft,
дозволяючи закладам освіти економити кошти при розгортанні та підтримці системи [6].

Висновки
Розроблена backend-архітектура на основі FOSS-технологій ефективно вирішуватиме

критичні проблеми та технічні виклики у проблемі цифровізації українських закладів вищої
освіти: високий рівень безпеки, продуктивність під великим навантаженням та адаптивність, та
може слугувати зразковим рішенням для українських ЗВО. Наступні етапи передбачають

30

розгортання системи в реальних умовах, тестування під високим навантаженням і потенційне
розширення функціональності у майбутньому.

Список використаних джерел
1. Fortinet. (2023). Cybersecurity Threats in Education: 2023 Report. Fortinet Cybersecurity Reports, 2023. URL:

https://www.fortinet.com/content/dam/fortinet/assets/reports/cybersecurity-threats-education-2023.pdf (дата звернення:
24.09.2025).

2. Smith J., Brown T. (2023). Leveraging Open Source for Institutional Efficiency. EDUCAUSE Review, 2023, 58(4),
22–30. URL: https://er.educause.edu/articles/2023/leveraging-open-source (дата звернення: 25.09.2025).

3. io. (2024). Spring Boot Reference Documentation 3.x. URL: https://docs.spring.io/spring-boot/docs/
current/reference/html/ (дата звернення: 25.09.2025).

4. Database Caching Strategies Using Redis. URL: https://docs.aws.amazon.com/whitepapers/latest/database-caching-
strategies-using-redis/database-caching-strategies-using-redis.pdf (дата звернення: 27.09.2025).

5. Resilience4j. (2024). Resilience4j User Guide. URL: https://resilience4j.readme.io/docs (дата звернення:
27.09.2025).

6. Johnson M., Lee K. (2023). Enterprise Software Licensing Costs: Oracle and Microsoft. Gartner Research, 2023,
ID G00768945. URL: https://www.gartner.com/en/documents/enterprise-software-licensing-costs-oracle-microsoft (дата
звернення: 27.09.2025).

7. UpGuard. (2023). Cybersecurity Challenges in Higher Education. URL: https://www.upguard.com/blog/
cybersecurity-challenges-higher-education-2023 (дата звернення: 28.09.2025).

8. Spring.io. (2024). Spring Security Architecture Guide. URL: https://spring.io/guides/topicals/spring-security-
architecture (дата звернення: 28.09.2025).

9. Khyzhniak A.V., Prila O.A. Designing a system for automated generation and automated assessment of
parameterized practical assignments. Technical sciences and technologies, Vol.2 (40), 2025. pp.221–233. DOI:
https://doi.org/10.25140/2411-5363-2025-2(40)-221-233

Yasinska Y. V., chief Bazylevych V. M.

National University "Chernihiv Polytechnic",
Department of Information and Computer Systems, Chernihiv, Ukraine

Contact author: Yuliia Yasinska,
e‑mail: yulyas1403@gmail.com,
ORCID: 0000-0000-0000-0000

COMPARISON OF IMPLEMENTATION OF DYNAMIC ROUTING PROTOCOLS IN OPEN

SOURCE AND COMMERCIAL SOLUTIONS

Annotation.
The abstracts present a comparative analysis of the implementation of dynamic routing protocols

in Open Source environments and commercial solutions. The problem is to choose the optimal tools
for building corporate networks, where performance, scalability and implementation cost are
important. The study examines the operation of RIP, OSPF and EIGRP protocols in free software
(FRRouting, VyOS) and in commercial Cisco IOS systems. The results demonstrate differences in
convergence speed, ease of configuration and integration capabilities. The significance of the work lies
in identifying the advantages of Open Source solutions as an affordable and flexible alternative for
organizations of various sizes.

Keywords: Corporate network; VLAN; dynamic routing; OSPF; RIP; FRRouting; Quagga; Open
Source; network virtualization; configuration automation.

https://www.fortinet.com/content/dam/fortinet/assets/reports/cybersecurity-threats-education-2023.pdf
https://er.educause.edu/articles/2023/leveraging-open-source
https://docs.spring.io/spring-boot/docs/%20current/reference/html/
https://docs.spring.io/spring-boot/docs/%20current/reference/html/
https://docs.aws.amazon.com/whitepapers/latest/database-caching-strategies-using-redis/database-caching-strategies-using-redis.pdf
https://docs.aws.amazon.com/whitepapers/latest/database-caching-strategies-using-redis/database-caching-strategies-using-redis.pdf
https://resilience4j.readme.io/docs
https://www.gartner.com/en/documents/enterprise-software-licensing-costs-oracle-microsoft
https://www.upguard.com/blog/%20cybersecurity-challenges-higher-education-2023
https://www.upguard.com/blog/%20cybersecurity-challenges-higher-education-2023
https://spring.io/guides/topicals/spring-security-architecture
https://spring.io/guides/topicals/spring-security-architecture
https://doi.org/10.25140/2411-5363-2025-2(40)-221-233
mailto:yulyas1403@gmail.com

31

Introduction
Modern corporate networks are characterized by high complexity and the need to provide a reliable,

secure and scalable infrastructure for interaction between organizational units. Traditionally, commercial
hardware and software complexes (for example, Cisco) are used to build such solutions, but their high
cost limits their use in small and medium-sized enterprises. An alternative is Open Source tools such as
FRRouting or VyOS, which allow implementing VLAN and dynamic routing based on open software.
The choice of a dynamic routing protocol and a platform for its implementation directly affects the
efficiency of the corporate network. The question arises as to how much open source solutions can
provide performance, fault tolerance and security comparable to commercial products, and what are their
limitations in practical application. The aim is to analyze and experimentally compare the
implementation of dynamic routing protocols (RIP, OSPF, EIGRP) in Open Source environments and
commercial solutions, in order to identify their advantages and disadvantages for building corporate
networks with several departments segmented using VLANs.

Materials and methods
Open source tools (FOSS) were used to model the corporate network, ensuring reproducibility and

availability of solutions. The experiment was conducted on a virtualized infrastructure with the Ubuntu
Server 22.04 LTS (64-bit) operating system.

Two Open Source tools were used as routers:
• FRRouting (FRR) v8.5.2 – package for implementing dynamic routing protocols (OSPFv2,

OSPFv3, RIP, BGP, IS-IS).
• VyOS 1.4-rolling (Equuleus) – Linux distribution specialized in networking functions, with

support for VLAN and dynamic routing.
For comparison, the commercial Cisco Packet Tracer 8.2.1 (Cisco IOS 15.2) environment was

used, which is a training simulation platform.
Three dynamic routing protocols were implemented in the study:
• RIP v2 – protocol with the metric "number of hops".
• OSPF v2 – link state protocol with Dijkstra's algorithm.
• EIGRP – hybrid protocol (distance vector + link state), with combined metrics (throughput,

latency, reliability).
The network consisted of three logical departments, segmented using VLANs (VLAN 10 –

accounting, VLAN 20 – HR, VLAN 30 – IT). Each VLAN was associated with a separate router. The
following type of configuration files were used on Open Source routers (fragment of an example for
OSPF in FRRouting):

router ospf
 network 192.168.10.0/24 area 0
 network 192.168.20.0/24 area 0
 network 192.168.30.0/24 area 0
In the VyOS environment, VLAN settings were performed via the CLI:
set interfaces ethernet eth0 vif 10 address 192.168.10.1/24
set interfaces ethernet eth0 vif 20 address 192.168.20.1/24
set interfaces ethernet eth0 vif 30 address 192.168.30.1/24
Documentation for each experiment includes:
• software and environment versions,
• network topology (diagrams in .png format)

32

• router configuration files (.conf)
• results of convergence tests and traffic tracing (.log)
This allows experiments to be replicated in other research or educational environments.
Results
To evaluate the performance of dynamic routing protocols, a series of experiments were conducted

on a corporate network consisting of three VLANs and three routers. The main metrics were:
convergence time after link failure, resource utilization, configuration complexity, and scalability.

Table 1 – Comparative analysis of dynamic routing protocols in Open Source and commercial
solutions

Protocol Environment Convergence time
after failure (s)

Resource usage
(CPU/RAM) Scalability Difficulty of

setup Note

RIP v2 FRRouting
(Linux) 18 s Low Limited (15

hops) Very simple Only suitable for
small networks

RIP v2 Cisco IOS 17 s Low Limited (15
hops) Very simple

There is almost no
difference with

FOSS

OSPF v2 FRRouting
(Linux) 6 s Average High Average

Works well for
medium/large

networks

OSPF v2 Cisco IOS 5 s Average High Average Slightly faster
convergence

EIGRP VyOS (Linux) 8 s Average High Average
Cisco

compatibility
required

EIGRP Cisco IOS 7 s Average High Average Optimized
performance

RIP showed the highest convergence time (17–18 seconds) in all environments, which confirms its low
suitability for modern corporate networks. However, configuration was easy in both Open Source and Cisco.

33

OSPF showed the best ratio of convergence speed (5–6 seconds), scalability and stability. In both
environments, the results are almost the same, which indicates the high quality of the implementation in FOSS.

EIGRP showed results close to OSPF (7–8 seconds), but has limitations in use: full compatibility
is available mainly in Cisco, although VyOS provided basic functionality.

Open Source tools (FRRouting, VyOS) demonstrated results comparable to commercial Cisco IOS,
which confirms their applicability in educational and even real corporate environments, provided they
are properly configured.

Thus, the study showed that OSPF in the FRRouting implementation is the most versatile and
productive option among Open Source, while EIGRP remains the advantage of the Cisco environment,
and RIP is more of an educational value.

The results confirmed that among the three protocols studied, OSPF is the most effective for corporate
networks, as it combines fast convergence, scalability, and stability. EIGRP showed similar values, but its use
is limited mainly to Cisco environments, which reduces its versatility in the Open Source context. RIP
remained the least productive due to significant delays in route recovery and limitations on the number of hops,
which makes it suitable only for educational or small networks. The study was performed in a virtualized
environment and training simulators (FRRouting, VyOS, Cisco Packet Tracer), which does not fully reflect
the scale of real corporate infrastructures. The tests were performed on a limited number of nodes and VLANs,
so the results may differ in large topologies with dozens or hundreds of routers. In addition, performance
aspects under high network load or the impact of security protocols were not taken into account. Traditionally,
corporate networks are built on commercial solutions (Cisco, Juniper), which provide high reliability and
support. However, the conducted research showed that Open Source tools (FRRouting, VyOS) can provide
comparable performance and functionality for VLAN and dynamic routing. This confirms the trend towards
wider use of FOSS in education, test environments and even in small and medium-sized businesses. In the
future, such Open Source solutions can become the basis for building corporate networks, especially where
budget savings and configuration flexibility are important. Further research can be aimed at:

• scaling experiments to larger networks with dozens of VLANs;
• analysis of protocol stability under high traffic;
• integration with automation systems (Ansible, Netmiko) for centralized management;
• consideration of combination with modern SDN (Software Defined Networking) approaches.
Thus, the work confirms that Open Source can be a competitive alternative to commercial solutions

in the field of corporate networks, and OSPF in the implementation of FRRouting is the optimal choice
for most scenarios.

Conclusions
This work showed that the use of Open Source tools allows for the effective implementation of a

corporate network with VLAN and dynamic routing support. The study confirmed that solutions such as
FRRouting and Quagga provide performance and flexibility sufficient for medium-sized corporate
environments, and also have the advantage of openness and adaptability. At the same time, it was determined
that commercial solutions often outperform Open Source in terms of ease of administration and the
availability of extended support. Prospects for further research lie in a deeper analysis of the scalability of
Open Source protocols in large networks, integration with cloud services, and configuration automation using
infrastructure management systems (for example, Ansible or Terraform). The results obtained can be useful
both for academic research and for the practical construction of corporate networks using open software.

34

List of sources used
1. Moy J. OSPF Version 2. RFC 2328. IETF. URL: https://datatracker.ietf.org/doc/rfc2328/ (дата звернення:

17.09.2025)
2. Hedrick C. Routing Information Protocol. RFC 1058. URL: https://datatracker.ietf.org/doc/rfc1058/ (дата

звернення: 17.09.2025)
3. FRRouting Project. FRRouting Documentation. URL: https://frrouting.org/doc/ (дата звернення: 18.09.2025)
4. Quagga Routing Suite. Documentation and User Guide. GNU. URL: https://www.nongnu.org/quagga/docs.html

(дата звернення: 18.09.2025)

Веремеєнко В. В., аспірант, Роговенко А. І., канд. техн. наук, доцент.
Національний університет «Чернігівська політехніка»,

(м. Чернігів, Україна)
Контактний автор: Василь Веремеєнко,

vasiliy.veremeenko@gmail.com.

ЗАСТОСУВАННЯ ЗЛІПКУ АУДІО ЗАПИСІВ ДЛЯ ПОШУКУ ЗБІГІВ ДЖЕРЕЛ ЗВУКУ
ЗНЯТИ З РІЗНИХ ПРИСТРОЇВ ЗАПИСУ В СИСТЕМІ ВІДЕОСПОСТЕРЕЖЕННЯ

Анотація: При побудові розгалуженої системи відеоспостереження збільшення кількості камер

створює проблему розсіяння уваги персоналу, що призводить до швидкої втоми та зменшення уваги
на події, що можуть вплинути на стан безпеки об’єкту. Для запобігання, пропонується
використовувати мікрофони, які наддадуть можливість привертати увагу на події та помічати камери,
які можуть мати важливі події. Для збільшення точності та автоматичного відслідковування та
об’єднання розрізнених подій від різних пристроїв в єдину подію, яка має шлях проходу
пропонується використовувати зліпок аудіо інформації в якості алгоритму находження збігів.

Ключові слова: відкрите ПЗ, відеоспостереження, аудіо запис, зліпок аудіо запису, python.
Системи відеоспостереження давно увійшли в наше життя для автоматизації охоронних

систем великих об’єктів та документування нештатних ситуацій, які виникають. Також мають
перевагу в точності та тривалості часу зберігання ніж пам’ять людей.

Будь-яка подія, яка буде зареєстрована наприклад
постом №1 (див. мал.1), через деякий час буде
зареєстрована на якомусь іншому посту, і в
централізованому середовищі, потрібно з’ясувати чи це
подія від того самого джерела чи це подія від іншого.
Напряму порівняти аудіо записи в ідеальних умовах маючи
однакові амплітуди без наявності перешкод можна
порівняти маючи два записаних файли. Але наявність
перешкод, різну відстань від джерела звуку до посту
спостереження ускладнюють порівняння.

Яким чином можливо порівняти два аудіо запису на
схожість. Найперше що приходить на думку це

використання ШІ. Тобто ми можемо навчити модель для розпізнавання на бібліотеці записів і
навчена модель дасть можливість класифікувати сигнали, що надходять. З недоліків цього
підходу є те що можна навчити ШІ лише на сигнали, які знайомі і входять в бібліотеку.

Малюнок 1

35

Другою можливістю я бачу використання зліпку звуку. Розглянемо існуючі алгоритми
побудови зліпків.

Алгоритм порівняння записів звуку запропонований [2] співробітниками компанії Філіпс.
Основною ідеєю цього методу побудова відбитку графічного зображення спектрограми, де
видалені несуттєві данні, а залишені лише піки частот див мал. 2.

Малюнок 2

Інший алгоритм порівняння записів на схожість запропонований Aver Li-Chum Wang [2]
полягає в побудові зліпку аудіо-запису використовуючи в якості вхідних даних спектрограму.
Аналізуючи спектрограму алгоритм знаходить максимуми амплітуд звукових хвиль за частотами
і зв’язує їх парами за умови їх близького розташування. Це дає змогу при порівнюванні не робити
побайтове порівняння, а шукати схожі перетини. Алгоритм також дає змогу при порівняти мати
не повне співпадінні розміру порівнюваних записів. Результат роботи алгоритму порівняння
можна побачити на малюнку 2. [2]. Де зображене часткове співпадіння еталонного запису звуку
та того що надійшло і необхідно встановити схожість.

Малюнок 2

Які ж цілі стоять в обробці звуку в системах відео спостереження коли ми маємо можливість
об’єднати відео та аудіо потік:

А) класифікація джерел звуку які надходять для визначення загроз. Для досягнення цієї цілі
підходять обидва метода і ШІ і порівняння за допомогою зліпку. Обидва методи повинні містити
попередньо сформовані бази звуків.

Б) побудова траєкторії проходження об’єкту через зону відповідальності. Також обидва
методу це можуть дозволити оскільки маючи класифікований об’єкт можна вважати що він один
і мати пости крізь які він проходить, але метод з використанням зліпку дозволить маркувати
об’єкти яких не має в базі, або взагалі не використовувати попередньо сформовану базу, а
формувати її по мірі виявлення.

Для перевірки можливості застосування алгоритму побудову зліпку аудіо запису та
подальшого порівняння можна використати мову програмування з відкритим кодом Python [4].

36

Який завдяки великий спільності має потужні бібліотеки наукових розрахунків. Для побудови
спектрограми записаного звуку БПЛА типу «Шахед», Я використав бібліотеки NumPy [5], SkiPy
[6], librosa [7]. Використання дало змогу створити прототип, який побудував спектрограму з
записаного аудіо див. малюнок 4. Атако ж знайти амплітуди з найбільшими значенням, що можна
використати для побудови зліпку див. мал. 5.

Малюнок 3

Малюнок 4

Для перевірки гіпотези використання порівняно джерел звуків за допомогою зліпків
потребує подальшого дослідження. А також необхідно дослідити використання алгоритму
порівняння в умовах шумового засмічення при розгортанні системи відеоспостереження на
підприємстві.

Список використаних джерел:
1. Avery Li-Chun Wang «An Industrial-Strength Audio Search Algorithm» ISMIR 2003, 4th International

Conference on Music Information Retrieval, Baltimore, Maryland, USA, October 27-30, 2003, Proceedings
2. Renjie Chu; Baoning Niu; Shanshan Yao “Peak-Based Philips Fingerprint Robust To Pitch-Shift For Massive

Audio Retrieval” 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM)
3. Ashton Gribble «The Five-Second Fingerprint: Inside Shazam’s Instant Song ID» https://towardsdatascience.com/

the-five-second-fingerprint-inside-shazams-instant-song-id/ (Дата перегляду: 15/09/2025)
4. https://www.python.org/ (Дата перегляду: 17/09/2025)
5. https://numpy.org/ (Дата перегляду: 17/09/2025)
6. https://scipy.org/ (Дата перегляду: 17/09/2025)
7. https://librosa.org (Дата перегляду: 17/09/2025)

https://towardsdatascience.com/%20the-five-second-fingerprint-inside-shazams-instant-song-id/
https://towardsdatascience.com/%20the-five-second-fingerprint-inside-shazams-instant-song-id/
https://www.python.org/
https://numpy.org/
https://scipy.org/

37

Грищенко А. А.1, Корбач Д. В.2
1Відокремлений структурний підрозділ

«Фаховий коледж транспорту та комп’ютерних технологій»
НУ «Чернігівська Політехніка», група КН-2301, м. Чернігів, Україна

2Відокремлений структурний підрозділ
«Фаховий коледж транспорту та комп’ютерних технологій»

НУ «Чернігівська Політехніка» ,
Циклова комісія інформаційних та комп’ютерних систем, м. Чернігів, Україна

Контактний автор: Анна Грищенко,
e-mail: annagrishchenko11@gmail.com,

 телефон: +380636928083

GITHUB І GITLAB ЯК ІНСТРУМЕНТИ КЕРУВАННЯ ПРОЄКТАМИ ТА КООРДИНАЦІЇ
РОЗРОБНИКІВ

Анотація. Розглянуто еволюцію систем контролю версій від локальних і централізованих

до децентралізованих. Розглянуто особливості Git як сучасного стандарту управління версіями та
хмарних реалізацій Git. Показано роль Git у забезпеченні командної роботи, керуванні проєктами
та автоматизації процесів розробки.

Ключові слова: система контролю версій, розробник, Git, проєкт.
У наш час розробникам програмного забезпечення, дизайнерам, бізнес-аналітикам та іншим

фахівцям, які працюють над електронними документами, кодом чи іншою електронною
інформацією, необхідно відстежувати зміни свого проєкту, повертатися до попередніх версій та
співпрацювати з іншими людьми. Для цього була створена система контролю версій.

Система контролю версій (далі СКВ) – це комп'ютерна інформаційна система, що записує
зміни, котрі вносяться у файл або проєкт, та надає можливість повернути файл або проєкт до
попередньої версії. Використання СКВ надає можливість повернути програмне забезпечення до
попередньої версії, у випадку виявлення проблем, допущених під час розробки нової версії [1].

Одним з найбільш поширених інструментів СКВ була система під назвою Revision Control
System (далі RCS), яка досі поширюється з багатьма комп’ютерами сьогодні. RCS зберігає
відмінності між файлами в спеціальному форматі на диску, який може заново відтворити
потрібний файл, в будь-який момент часу. Дана система відноситься до локальних СКВ, які
характерні своєю простою базою даних [1].

Також важливим питанням для розробників стала можливість командної роботи над
проєктом, щоб всі учасники проєкту завжди мали актуальну версію програмного забезпечення.
Для розв’язання цієї проблеми були розроблені централізовані системи контролю версій (далі
ЦСКВ). Прикладами таких систем є Concurrent Versions System (CVS), Subversion і Perforce, які
мають єдиний сервер зі всіма версіями файлів, та деяке число клієнтів, які отримують файли з
центрального сервера. Певний час, CVS був стандартом для систем контролю версій [1].

Використання ЦСКВ має безліч переваг, особливо в порівнянні з локальними СКВ, проте
обидві системи контролю версій мають значний недолік – зберігається ризик втрати проєкту.
Також додавала труднощів однорівнева система коміту. Без втручання в репозиторій виправити

mailto:annagrishchenko11@gmail.com

38

помилку було неможливо. Щоб вирішити ці проблеми, розробники створили децентралізовані
системи контролю версій (ДСКВ). До таких систем відноситься система Git [1].

Git це система контролю версій, що була створена Лінусом Торвальдсом у 2005 році для
розробки ядра Linux. Git цінується програмістами, оскільки ефективно працює з проєктами різного
масштабу, а також дозволяє фахівцям співпрацювати, не заважаючи системам один одного [2].

Незалежно від того, наскільки незначні зміни вносяться, система зафіксує попередню
версію бази даних. Відтак інженери можуть переглядати зміни або скасовувати їх у будь-який
час, що важливо для підвищення якості коду

Різниця між СКВ та Git полягає в тому, що в останньому варіанті можлива взаємодія з
кількома версіями проєкту [2].

Якщо компанія має власну команду розробників, можна використовувати застосовувати
локальний Git. Якщо мета – ефективна співпраця з віддаленими експертами, краще обрати
хмарне програмне забезпечення. У такому випадку репозиторії на основі коду розташовані на
GitLab або GitHub [3].

GitHub був заснований Крісом Ванстрасом, Пі Джей Хайєттом і Томом Престон-Вернером,
і розпочав свою роботу 2008 року як хостинг репозиторіїв Git. GitHub надає змогу легко зберігати,
спільно використовувати і керувати кодом. Залучаючи мільйони розробників з усього світу,
GitHub став найбільшою у світі платформою для хостингу коду та управління проектами.
Величезна спільнота користувачів та екосистема інструментів і бібліотек є однією з основних
причин популярності GitHub. Розробники використовують GitHub для спільної роботи над
відкритими та закритими проєктами, обміну знаннями та досвідом, а також для участі у відкритих
дослідженнях і проєктах [4].

GitLab – це веб-платформа для управління репозиторіями Git, розроблена Дмитром
Запорожцем і Валерієм Сизовим у 2011 році. GitLab був створений як безкоштовний хостинг
репозиторіїв Git і став привабливим рішенням для компаній і команд розробників, які хотіли
зберегти контроль над своїм кодом і процесами розробки. Однією з ключових особливостей
GitLab є його повна циклічна інтеграція та безперервна доставка (CI/CD). Таким чином
підвищується продуктивність і якість розробки, оскільки процеси складання, тестування та
розгортання застосунків стають автоматизованими [4].

Систему GitLab використовують понад 100 000 організацій, включаючи IBM, китайського
гіганта електронної комерції Alibaba, японську Sony, Юліхський дослідницький центр, NASA, CERN,
Invincea, видавництво O’Reilly, Обчислювальний центр Лейбніца (LRZ) і фонд GNOME, KDE [5].

Щоб зрозуміти, яку веб-платформу краще обрати для роботи, порівняємо GitHub та GitLab.
В таблиці 1 приведено порівняння платформ GitHub та GitLab [1].

Таблиця 1 - Порівняння платформ GitHub та GitLab
Аспект GitLab GitHub

1 2 3

Керування
репозиторіями

Ефективні інструменти управління
проєктами, включно з управлінням
завданнями, вікі та релізами. Можливість
створення декількох репозиторіїв у рамках
одного проєкту. Вбудований редактор коду.

Базові інструменти управління репозиторіями.
Можливість створення та управління гілками,
тегами та запитами на злиття. Можливість
використання проєктних дощок для
управління завданнями.

39

Закінчення таблиці 1
1 2 3

Процес злиття
коду

Вбудовані інструменти для управління
процесом злиття коду, включно зі створенням
запитів на злиття, рецензуванням коду й
автоматичним тестуванням. Можливість
налаштування прав доступу до коду.

Простий процес злиття коду за допомогою
запитів на злиття. Можливість додавання
коментарів і рецензування коду.

Інструменти
CI/CD

Інтегровані CI/CD пайплайни з можливістю
налаштування і запуску автоматичного
тестування, складання та розгортання
додатків. Вбудовані репозиторії для
зберігання артефактів збірки.

GitHub Actions для створення та автоматизації
робочих процесів. Бібліотека готових дій та
інтеграцій з популярними сервісами.

Підтримка
спільноти

Активна спільнота користувачів і
розробників. Можливість створення та
участі в спільнотах проєктів. Форум
підтримки та онлайн-документація.

Величезна спільнота розробників і відкритих
проєктів. Можливість перегляду та участі у
відкритих проектах. Офіційні та неофіційні
ресурси підтримки.

Користувацьй
інтерфейс і
зручність
використання

Відносно складніший інтерфейс, але з
широким спектром функціональності.
Потребує деякого часу для вивчення.

Простий та інтуїтивно зрозумілий інтерфейс,
легкий для освоєння навіть для новачків.
Менше функціональності, але простіший у
використанні.

У сучасних умовах, системи контролю версій відіграють ключову роль у розробці та

підтримці програмного забезпечення й інформаційних сервісів, забезпечуючи надійне
відстеження змін та управління версіями проєктів. Система Git, що підтримує розподілену роботу
та дозволяє ефективно відновлювати й аналізувати зміни, є найпоширенішою та
високоефективною СКВ. На основі Git створені веб-платформи GitHub і GitLab, які завдяки
зручності інтерфейсу та широкому функціоналу значно розширили можливості командної
співпраці та управління розробкою.

Список використаних джерел
1. Про систему контролю версій. Git. URL: https://git-scm.com/book/uk/v2/Вступ-Про-систему-контролю-

версій (дата звернення: 17.09.2025).
2. GitHub vs GitLab. Обираємо сервіс під потреби проєкту. DOU. URL: https://dou.ua/lenta/articles/github-vs-

gitlab/ (дата звернення: 17.09.25).
3. Git, GitLab та Github. Особливості систем контролю версій та їх відмінності. PNN Soft. URL:

https://pnn.com.ua/ua/blog/detail/git-gitlab-and-github-difference-and-peculiarities-of-version-control-systems (дата
звернення: 16.09.25).

4. Порівняння Gitlab і Github. Foxminded. URL: https://foxminded.ua/gitlab-vs-github/ (дата звернення:
16.09.25).

5. GitLab в «Алеї слави». Історія успіху конкурента GitHub. Uaspectr URL: https://uaspectr.com/2021/10/15/
gitlub-v-aleyi-slavy/ (дата звернення: 18.09.25).

https://uaspectr.com/2021/10/15/

40

Клочко К. М., Роговенко А. І., Бобришев Є. С.
Національний університет "Чернігівська Політехніка",

кафедра інформаційних та комп’ютерних систем, м. Чернігів, Україна
Контактний автор: Костянтин Клочко,

e-mail: kostya_klochko@ukr.net,
ORCID: 0009-0003-8555-8723

ДОСВІД КЕРУВАННЯ ВЛАСНИМИ СЕРВЕРАМИ

У ХМАРІ І У ЛОКАЛЬНОМУ ДАТА-ЦЕНТРІ

Анотація. Використання публічних хмар призводить до залежності від постачальників та їх
закритих екосистем, що ускладнює міграцію між хмарами. Вимоги безпеки часто потребують
повного контролю за серверами. Водночас створення власної хмари вимагає значних ресурсів для
розгортання та підтримки. Використання ВПЗ дозволяє повернути контроль та спростити
керування інфраструктурою, яка може бути у різних хмарах. Для вирішення цих проблем
використовується: Proxmox для керування віртуалізацією, Ansible для автоматизації
конфігурацій, Docker для контейнеризації сервісів, Gitea та Drone CI/CD для керування
проєктами. У результаті це дало змогу зменшити витрати на інфраструктуру й стати незалежними
від провайдерів. Крім того, за потреби використовувати сервіси публічних хмар.

Ключові слова: відкрите ПЗ; сервера; Cloud; DevOps; інфраструтура.
Вступ
Що таке хмара? Це інфраструктура, яка надає обчислювальні потужності користувачам. [6]
Керування інфраструктурою складна справа. Сервера можуть бути у будь-якій хмарі:

публічній, приватній (on-premise), та навіть гібридній.
Використання публічної хмари може призвести до залежності від постачальника послуг та

його закритої екосистеми. Kubernetes може частково вирішити проблему, але не вирішить
міграцію між хмарами, оскільки його екосистема не замінить усі сервіси будь-якої хмари.

Крім того, вимоги з безпеки можуть вимагати повного контролю за власними серверами, що
сторонні хмарні сервіси не можуть забезпечити.

Як щодо власної хмари? Треба буде розгорнути, налаштувати та підтримувати її, що вимагає
значних зусиль та власної команди. Не кожна компанія має ресурси для наймання власної команди
адміністраторів та DevOps, які будуть керувати серверами, але готові заплатити за хмарний сервіс.

Але не залежно від вимог з безпеки, збільшення контролю за власними потужностями
зменшує вартість за інфраструктуру і збільшує вартість підтримки. Іноді це призводить до значних
заощаджень [5].

Гібридний варіант може допомогти заощадити кошти та використати хмарні сервіси за
потребою.

Матеріали та методи
Для керування власними потужностями використовуються вільне програмне забезпечення.
Proxmox [13] для керування датацентром з розгорнутими нодами:
- PVE [13] - для керування віртуальними машинами і контейнерами.
- PBS [13] - для керування бекапами.

mailto:kostya_klochko@ukr.net

41

Дозволяє надати доступ до ресурсів Bare-Metal серверів. Дуже просте встановлення і усе
працює з коробки. Крім того, налаштувати мережу з Open vSwitch [1, c. 7], Firewall [1, c. 257];
підтримку high-availability [1, с. 293] для кластеру і LiveMigration [1, c. 94]; налаштування сховища
з Ceph, ZFS та LVM [1, с. 115].

Перевага використання віртуалізації з Proxmox у тому що стан віртуальних машин можна
забекапити та мігрувати на іншу ноду, що дозволить зменшити затримки на відновлення роботи
користувацьких сервісів.

Для створення віртуальних машин і початкових налаштувань використовуємо Cloud-init [4]
і інтеграцію з Proxmox.

Ansible [2] - для налаштування і керування бажаним станом змінної інфрастуктури. Не залежно
від того, де розміщений сервер: чи нода Proxmox, віртуальна машина у кластері чи у публічній хмарі.

Для запуску сервісів використовуємо незмінну інфраструктуру (immutable infrastructure).
Для розгортання використовуються Docker [7] контейнери з docker-compose[8] налаштуваннями.
Це дозволяє не залежати від системи віртуальної машини та полегшити оновлення. Крім того,
спрощує відлагодження і міграцію.

В процесі міграція інфраструктури до Kubernetes [12], що може спрости керувати флотом
сервісів у кластері з гібридною моделлю, але ускладнить підтримку. Крім того, стан кластера
можна автоматизувати з GitOps інструментів як FluxCD [10].

Звісно, GitOps можливий не тільки з Kubernetes, але з інструментами IaC (Infrastructure as
Code), які підтримують pull-модель, на приклад, Ansible з ansible-pull [3].

Для керування проєктами використовуються Gitea [11] та Drone CI/CD [9]. Ці сервіси не
вимагають багато ресурсів, оскільки створенні з допомогою Golang. Gitea має вбудований реєстр
для артефактів, а Drone CI/CD використовує Docker контейнери для виконання кроків та плагінів.
За потреби легко переробити конвеєр між Drone CI/CD та Gitlab CI/CD. Крім того, спрощується
відлагодження, оскільки використовуються контейнери.

Локальна хмара може бути використана для: тестового середовища, запуску локальних
сервісів, створення приватного NAS сховища для організацій.

Результати
Наразі є кілька Proxmox серверів, які розділені за призначенням: для робочого навантаження

і для бекапів. Налаштування серверів та віртуалок здійснено з допомогою Ansible плейбуків.
Cloud-init для шаблонів віртуальних машин.

Сервіси працюють як Docker контейнери з віртуальних машин.
Інфраструктура підтримує необхідні сервіси для команди як Gitea та Drone CI/CD.
Використання Bare-Metal дозволило зменшити витрати за хмару, але збільшити витрати на

обслуговування інфраструктури.
Обговорення
Використання публічної хмари має переваги: доступ до ресурсів за потребою, плата за

використане, масштабування.
Найбільші обмеження при переході до приватної хмари – це складність.
За усе треба платити. За безпеку – зручністю. За незалежність – складністю.
ВПЗ допомагає уникнути залежності від хмарних провайдерів та полегшить мігрування до

власної хмари.
Гібридна може дозволити використати переваги двох хмар.

42

Висновки
Отже, перехід від публічної хмари до гібридної чи приватної може зменшити витрати та

залежність від постачальників.
Крім того, підвищити безпеку зі збільшенням контролю за інфраструктурою.
У результаті переходу зменшилися витрати за інфраструктуру внаслідок підтримки

власними зусиллями.
Використовуються ВПЗ для цього: Proxmox, Cloud-init, Ansible, Docker, Gitea, Drone CI/CD,

Kubernetes, FluxCD.
Список використаних джерел
1. Ahmed W. Mastering proxmox - third edition. Packt Publishing, Limited, 2017. 482 p.
2. Ansible documentation. Ansible Documentation. URL: https://docs.ansible.com/ (дата звернення: 21.09.2025).
3. Ansible-pull – ansible community documentation. Ansible Documentation. URL: https://docs.ansible.com/

ansible/latest/cli/ansible-pull.html (дата звернення: 27.09.2025).
4. Cloud-Init support - proxmox VE. Proxmox VE. URL: https://pve.proxmox.com/wiki/Cloud-Init_Support (дата

звернення: 21.09.2025).
5. Cloud vs. on-premises datacenters: how to choose for your workload. Red Hat - We make open source technologies

for the enterprise. URL: https://www.redhat.com/en/blog/cloud-vs-on-premises (дата звернення: 27.09.2025).
6. Cloud vs on premise vs hybrid IT infrastructure with pros/cons (2025). Tech 21 Century. URL:

https://www.tech21century.com/cloud-vs-on-premise-vs-hybrid-infrastructure-pros-cons/ (дата звернення: 27.09.2025).
7. Docker: accelerated container application development. Docker. URL: https://www.docker.com/ (дата звернення:

26.09.2025).
8. Docker compose. Docker Documentation. URL: https://docs.docker.com/compose/ (дата звернення: 26.09.2025).
9. Drone CI – automate software testing and delivery. Drone CI – Automate Software Testing and Delivery. URL:

https://www.drone.io/ (дата звернення: 26.09.2025).
10. Flux - the GitOps family of projects. Flux. URL: https://fluxcd.io/ (дата звернення: 26.09.2025).
11. Gitea official website. Gitea Official Website. URL: https://about.gitea.com/ (дата звернення: 26.09.2025).
12. Production-Grade container orchestration. Kubernetes. URL: https://kubernetes.io/ (дата звернення: 26.09.2025).
13. Proxmox server solutions. Proxmox. URL: https://www.proxmox.com/en/ (дата звернення: 21.09.2025).

Корбач Д. В.
Відокремлений структурний підрозділ

«Фаховий коледж транспорту та комп’ютерних технологій»
НУ «Чернігівська Політехніка»,

Циклова комісія інформаційних та комп’ютерних систем, м. Чернігів, Україна
Контактний автор: Дмитро Корбач,
 e-mail: korbachdmytro@gmail.com,

ORCID:0009-0004-6363-9482

ПРОЄКТУВАННЯ АРХІТЕКТУРИ ВІРТУАЛЬНОЇ НАВЧАЛЬНОЇ ЛАБОРАТОРІЇ

Анотація. Розглянуто проєктування архітектури віртуальної навчальної лабораторії на базі
контейнерів для проведення практичних та лабораторних занять. Використано Podman для
керування контейнерами та Traefik для маршрутизації запитів. Використані технології є open-
source, що надає можливість безкоштовного впровадження в освітній процес. Запропонована
віртуальна навчальна лабораторія спрощує використання складного ПЗ та підвищує ефективність
навчального процесу.

https://docs.ansible.com/
mailto:korbachdmytro@gmail.com

43

Ключові слова: контейнери, зворотній проксі-сервер, запит, віртуальна навчальна
лабораторія.

Починаючи з 2020 року, в зв’язку з пандемією, в більшості навчальних закладів України
почали запроваджувати новий для освіти дистанційний формат занять. Хоча рівень технічного
розвитку комп’ютерів та комп’ютерних мереж на той час вже відповідав вимогам переведення
освіти в онлайн, через швидкі темпи переходу виникала велика кількість проблем з адаптації
занять, починаючи від приведення методичних матеріалів під новий формат роботи, закінчуючи
використанням спеціалізованого програмного забезпечення на заняттях.

В 2025 році досі зберігаються проблеми використання спеціалізованого програмного
забезпечення для організації практичних та лабораторних занять в дистанційному форматі. Для
вирішення цієї проблеми, реалізовується сервіс, в котрому здобувачі освіти можуть запускати
середовища, для виконання практичних та лабораторних робіт, доступ до яких відбувається
через веббраузер.

Для організації ізольованого середовища, де кожен здобувач освіти може виконувати
завдання, можна використовувати віртуальні машини або контейнери.

На думку фахівців, для розробки спеціалізованих контейнерів для різних дисциплін слід
використовувати Docker. «Використання технології Docker в освітньому процесі завдяки
гнучкості та портативності створюваних ним навчальних середовищ відкриває нові можливості
для оптимізації навчання та впровадження сучасних методик викладання, що сприяє зростанню
компетентностей учасників» [1].

Використання контейнерів краще підходить для реалізації віртуальної лабораторії, тому
потребує набагато менше ресурсів сервера для роботи ніж віртуальна машина. Також
контейнерами простіше керувати програмно. На рисунку 1 ліворуч приведено архітектуру
додатків з використанням контейнерів, праворуч з використанням віртуальних машин.

Серед інструментів, котрі дозволяють запускати контейнери, найбільш популярними є
Docker та Podman. Для проектування системи було обрано Podman, через те, що Podman є
повністю відкритим, з ліцензією Apache-2.0 на ядро та всі компоненти. Також Podman не потребує
root прав для запуску контейнерів та відсутність важких механізмів керування контейнерами [2].

Рисунок 1 – Порівняння контейнерів та віртуальних машин

Для керування контейнерами, використовується вебсервер, написаний на мові
програмування python з використанням бібліотеки flask. В даній системі, сервер виконує наступні
задачі:

44

− авторизація користувачів;
− запуск та зупинка контейнерів;
− підготовка робочого середовища перед початком роботи;
− моніторинг контейнерів;
− збереження історії дій.
Для авторизації на сервері доречно використовувати протокол LTI (Learning Tools

Interoperability) для передачі на сервер з системи дистанційного навчання Moodle інформації про
здобувача освіти, роль, id лабораторної/практичної роботи тощо. Даний протокол значно зменшує
складність реалізації проєкту, через те, що на сервері достатньо зберігати лише інформацію про
лабораторні роботи, без необхідності зберігати додатковий матеріал до занять.

Також перевагою використання LTI є можливість передачі інформації назад на Moodle,
наприклад про отриману оцінку, що дає можливість для подальшого розвитку проєкту [3].

Для отримання доступу до запущеного контейнера, краще за все використовувати
зворотний проксі-сервер.

Зворотний проксі-сервер — це сервер, який розташований між клієнтом та сервером.
Зворотний проксі-сервер відповідає за надсилання запитів на контейнер та повернення відповіді
контейнера назад до клієнта [4].

Переадресація клієнта на необхідний контейнер відбувається за допомогою зчитування
доменного імені. Наприклад сервер знаходиться за доменним іменем labs.stu.cn.ua. При введені
даного доменного імені в url строку браузера, трафік буде спрямований на сервер, котрий керує
віртуальною лабораторією. Сервер запускає контейнер та відкриває порт 8000 на комп’ютері з ip
адресою 192.168.10.100 для доступу до програми. Також сервер робить налаштування зворотного
проксі-сервера, де запит по доменному імені lab8000.labs.stu.cn.ua переадресовується на
192.168.10.100:8000 комп’ютера в локальній мережі.

В якості зворотного проксі сервера використовується Traefik. Даний зворотний проксі-
сервер розповсюджується за ліцензією MIT [5].

На рисунку 2 приведено архітектуру віртуальної навчальної лабораторії.

Рисунок 2 - Архітектура віртуальної навчальної лабораторії

Самі образи контейнерів для лабораторій розробляються з врахуванням використовуваних
технологій в лабораторних роботах. Наприклад для лабораторних робіт з програмування
використовуються CodeServer, компілятор GCC та розширення до CodeServer. Для даного
контейнера достатньо проксувати 1 порт.

45

Отже віртуальні лабораторії на базі контейнерів є перспективним напрямком розробки, що
дозволить спростити проведення практичних та лабораторних занять, та дозволить
використовувати складне в налаштуванні програмне забезпечення на заняттях. Використані
технології є відкритим програмним забезпеченням, що дозволяє безперешкодно користуватися
даною віртуальною лабораторією в домашній, комерційних та освітніх цілях.

Список використаних джерел
1. Кубік М. А., Мартинюк С. В. ВИКОРИСТАННЯ ТЕХНОЛОГІЇ DOCKER В ОСВІТНЬОМУ ПРОЦЕСІ.

Сучасні цифрові технології та інноваційні методики навчання: досвід, тенденції, перспективи : Міжнар. науково-
практ. конф., м. Тернопіль, 10 квіт. 2025 р. Тернопіль, 2025. С. 216–218.

2. Rootless containers with Podman. Red Hat Developer. URL: https://developers.redhat.com/blog/2020/09/25/
rootless-containers-with-podman-the-basics (дата звернення: 29.09.2025).

3. What is LTI. Future Learning. URL: https://futurelearning.nl/en/2021/11/10/what-is-lti/ (дата звернення:
29.09.2025).

4. Shim T. What is a reverse proxy?. RapidSeedbox. URL: https://www.rapidseedbox.com/blog/reverse-proxy (дата
звернення: 29.09.2025).

5. Traefik. the cloud native application proxy. GitHub. URL: https://github.com/traefik/traefik (дата звернення:
29.09.2025).

Макаренко О. Ю.

НУ "Чернігівська політехніка", м. Чернігів, Україна

ГЕНЕРАТИВНИЙ ШТУЧНИЙ ІНТЕЛЕКТ: ОСВІТНІ ТА ПРИКЛАДНІ АСПЕКТИ

Анотація
Генеративний штучний інтелект (GenAI) сьогодні швидко трансформує сучасну освіту,

науку та бізнес. У роботі представлено корисний огляд курсу Kaggle "5 Days of Generative AI"
від Google, що пропонує фундаметальний і системний підхід до вивчення великих мовних
моделей (LLM), інженерії підказок та мультимодальних систем. В курсі показано можливості
інтеграції відкритого ПЗ у навчальні та прикладні процеси. Основний результат полягає у
визначенні ефективний методів навчання та впровадження GenAI у практичні проєкти.

Ключові слова: генеративний AI; відкриті інструменти; бізнес; освіта; інновації.
Вступ
Генеративні моделі стали і є на сьогодні ключовою технологією штучноно інтелекту.

Водночас їхнє впровадження потребує доступних освітнії ресурсів. Саме тому курс Kaggle є
прикладом ефективного інтенсиву, що поєднує теоретичні основи та практичні кейси. Метою
роботи є узагальнення його методології для використання у мофрмальних освітніх та прикладних
контекстах. Курс є абсолютно безкоштовним.

Матеріали та методи
Джерельною базою став відкритий курс Kaggle, що охоплює:
• основи генеративних моделей;
• інженерію підказок;
• роботу з мультимодальними системами;
• приклади бізнес-застосувань.

https://developers.redhat.com/blog/2020/09/25/

46

У курсі застосовано Python, Jupyter Notebooks, бібліотеки Hugging Face Transformers, що
забезпечують відтворюваність результатів і доступність навчання.

Результати
Визначено, що 5-ти денний інтенсивний курс ефективно поєднує навчання та практику

завдяки короткому формату, інтерактивним завданням. Це швидкий шлях від прототипу до
продакшену. Оволодіти навичками розгортати й масштабувати AI-агентів для реального
використання.

Обговорення
Генеративний AI демонструє високу прикладну цінність. Але є обмеження, а саме

доступність обчислювальних ресурсів і якість відкритих моделей. Подальші дослідження можуть
бути спрямовані на розробку освітніх програм з інтеграцією GenAI у вищій освіті та на підтримку
інноваційних стартапів.

Висновки
Особисто мені огляд курсу Kaggle показав, що використання відкритого ПЗ та практичних

кейсів є ефективним способом популяризації й впровадження генеративного штучного інтелекту
в освіту, науку та бізнес.

Список використаних джерел
1. Kaggle. 5 Days of Generative AI. URL: https://www.kaggle.com/learn-guide/5-day-genai (дата звернення:

30.09.2025).
2. Vaswani A. et al. Attention Is All You Need. Advances in Neural Information Processing Systems, 2017, Vol. 30.

Міщенко М. В.
Національний університет «Чернігівська політехніка»,

кафедра ІТПІ, м. Чернігів, Україна
Контактний автор: Максим Міщенко,

e‑mail: max.mishchenko771@gmail.com,
ORCID: 0000-0001-9769-9759

ДОСЛІДЖЕННЯ ЕНЕРГОСПОЖИВАННЯ ТА ШВИДКОДІЇ ЕКСПЕРИМЕНТАЛЬНОЇ
ВЕРСІЇ CPYTHON3.13 З ДОДАНИМИ JIT-КОМПІЛЯТОРОМ ТА ВИМКНЕНИМ GIL

Анотація. У сучасному світі енергоефективність ПЗ є актуальною проблемою та має

потребу дослідження для різних типів завдань. Мова програмування Python, а саме найбільш
розповсюджена її імплементація CPython, має суттєвий недолік у вигляді повільної швидкості
виконання програм. Також з цієї проблеми витікає й низька енергоефективність Python,
оскільки довший час виконання означає більше енерговитрат. У даній роботі в результаті
експериментального порівняння енергоефективності та швидкості виконання CPU-bound
завдань з використанням експериментальної та звичайної версії CPython 3.13.7, було визначено
зменшення часу виконання на 50% та енергоспоживання на 34% у multithreading режимі для no-
GIL імплементації. Також зменшення часу виконання на 44% та енергоспоживання на 35% було
відмічено в multiprocessing режимі для CPython3.13.7 JIT порівняно зі звичайною версією
CPython3.13.7. Також було визначено, що JIT компілятор numba значною мірою перевершує всі

https://www.kaggle.com/learn-guide/5-day-genai
mailto:max.mishchenko771@gmail.com

47

версії CPython3.13.7 за швидкодією та енергоефективністю: 97% зменшення часу виконання та
98% зменшення енергоспоживання.

Ключові слова: відкрите ПЗ; CPython3.13; JIT-компілятор; GIL; numba; енергоспоживання.
Вступ
З активним розвитком IT технологій все більш актуальною стає проблема оптимізації

енергоспоживання ПЗ. Проблема підвищеного енергоспоживання збільшує вартість
функціонування великих дата центрів, зменшує автономність локальних лептопів та створює
потребу в більшій виробці електроенергії, що загалом має негативний вплив на оточуюче
середовище. В нашій роботі ми досліджуємо дану проблему з точки зору оптимізації розробником
енергоефективності програмного забезпечення.

Нами було вирішено дослідити найновіші інструменти оптимізації мови Python та їх
потенційний вплив на енергоефективність ПЗ. У версії CPython 3.13, розробники прибрали GIL у
експериментальному режимі, доступному при локальній збірці cpython. Global Interpreter Lock
(GIL) обмежує багатопоточність Python на рівні байткоду. Це призводить до збільшеного часу
виконання програм та прямо впливає на низьку енергоефективність. Також у версії CPython 3.13
було додано експериментальний JIT-компілятор. Процес трансляції байткоду в машинний код для
експериментального JIT в Python3.13 здійснюється з використанням техніки “copy and patch” [1].
Замість повної генерації машинного коду, JIT підставляє попередньо визначені відрізки коду для
відомих послідовностей байткоду та виконує скомпільований машинний код напряму. Для
порівняння було використано JIT-компілятор Numba, який заточений на роботу з математичними
обчисленнями, циклами та бібліотекою numpy [2].

Метою дослідження є визначення наявності або відсутності прискорення виконання CPU-
bounded завдань та зменшення енергоспоживання у багатопоточному режимі з використанням JIT
компіляторів та no-GIL режиму експериментальної версії CPython3.13 порівняно зі звичайною
версією CPython3.13, а також компілятором numba.

Матеріали та методи
Для проведення експерименту було клоновано офіційний репозиторій мови CPython [3] та

локально зкомпільовано версію 3.13.7. Компіляція відбувалась в 2х режимах: з встановленими
параметрами --enable-experimental-jit та --disable-gil. Відповідно, було локально отримано 2
окремі версії мови CPython: python3.13-jit, та python3.13t (no-gil). У якості вхідних даних для
експерименту було створено 2 окремих скрипта на мові python. Перший скрипт містить метод для
обчислення суми всіх простих чисел в циклі від 1 до n, що є CPU-bound навантаженням. Другий
скрипт містить паралелізацію обчислень шляхом застосування модулів multithreading та
multiprocessing в python. Експеримент був побудований з трьох основних етапів: «прогрів» JIT,
запуск основних задач з використанням модулів конкурентного виконання multithreading та
multiprocessing, вимірювання часу виконання та енергозатрат з використанням бібліотеки
PyRAPL [4]. В якості операційної системи для проведення дослідження використано Linux Ubuntu
24.02. Характеристики ПК, на якому проведено експерименти: ASUS VivoBook X515JA, CPU:
Intel® Core™ i7-1065G7 CPU @ 1.30GHz × 8, RAM: 16,0 GiB. Весь сирцевий код та команди
налаштування експерименту можна знайти у нашому GitHub репозиторії [5].

Результати
Результати проведених експериментів, приведені на рисунку 1.

48

Рис. 1 – Таблиця результатів експериментального дослідження часу виконання та

енергоспоживання для різних типів інтерпретаторів та JIT-компіляторів cpython3.13.7
Аналізуючи результати, можемо дійти висновку, що компілятор numba показав найнижчий

серед усіх витрачений час на обчислення та найменші енергозатрати – до 97% зменшення часу та
до 98% зменшення енергозатрат порівняно з базовим Cpython3.13.7. Це демонструє найвищу
серед досліджених інтерпретаторів та JIT-компіляторів спроможність до оптимізації інтенсивних
обчислень та роботи з циклами.

Поглянувши на no-GIL режим, можемо впевнитись, що при кількості потоків, рівній
кількості логічних CPU (8), та інтенсивних CPU-bound завданнях, no-GIL показує нижчий на 50%
середній час на обробку та нижче на 34% енергоспоживання, порівняно з інтерпретатором з GIL,
що вказує на ефективність no-GIL. Однак, цей ефект наразі спостерігається тільки якщо вказувати
неоднорідні великі числа в якості вхідних параметрів для нашої задачі (від 200000 до 1000000),
що дає змогу ефективно використовувати перевагу багатопоточної обробки. Інакше, накладні
витрати на створення і реалізацію no-GIL багатопоточності будуть перекривати її переваги.

Використання python JIT-компілятора показало зменшення часу виконання, порівняно зі
звичайною версією python, як для multithreading, так і для multiprocessing.

Обговорення
Основними обмеженнями дослідження є тільки один досліджений тип задач для різних

типів інтерпретаторів та режимів паралелізації. На основі формули для обчислення
енергоспоживання E = P * t, де P – середня обчислювальна потужність (Вт), а t – час обчислень
(с), визначено, що енергоспоживання напряму залежить від часу виконання та потужності.
Відповідно до отриманих результатів, можемо стверджувати, що енергоспоживання у більшості
випадків зменшується зі зменшенням часу виконання. Однак є випадки, де спостерігаємо
зворотну ситуацію – наприклад cpython3.13.7[jit], 1 thread: 8.02 с, 66.2 Дж; cpython3.13.7[jit], 4
threads: 6.97 с, 96.08 Дж. Маємо підстави стверджувати, що зі збільшенням кількості обробників
(потоків), збільшується обчислювальна потужність, що збільшує енергозатрати. У якості
майбутньої роботи планується дослідити дану залежність та запропонувати відповідну
математичну модель енергоефективності.

49

Автори Stoico, Vincenzo та ін. в дослідженні [6] проводили виміри ефективності JIT-
компіляторів для Python в виключно одно поточному режимі. Порівняно з даним підходом, наші
експерименти пропонують вивчення метрик виконання в multithreading та multiprocessing режимах.
У роботі SIDDIQUI, Ali [7] автор зосереджений на перевірці зворотної сумісності моделі пам’яті, що
використовується з новим “free threaded” (no-GIL) python. В нашій роботі досліджується ефективність
застосування no-GIL python до виконання багато поточних обчислень.

Висновки
В результаті отриманих експериментальних даних, можна стверджувати, що нововведення

JIT та no-GIL в експериментальній версії CPython3.13.7 дійсно знижують час виконання до 44%
(jit, 4 workers, processes) та 50% (no-gil, 8 workers, threads) та цим покращують енергоефективність
програм на 35% та 34%, порівняно зі звичайною версією CPython3.13.7 для досліджених CPU-
bounded задач. В той же час, JIT-компілятор numba все ще в рази краще справляється з
оптимізацією обчислень та обробок в циклі – до 97% зменшення часу та до 98% зменшення
енергозатрат порівняно зі звичайною версією CPython3.13.7 відповідно.

У майбутньому планується дослідити залежність енергозатрат від різних факторів виконання
програми та побудувати математичну модель оптимізації енергоспоживання програмним
забезпеченням. Також планується більш детально дослідити режим зняття блокувальника GIL з
метою визначення умов, за яких він дозволяє оптимізувати виконання багатопоточних програм.

Список використаних джерел
1. What’s New In Python 3.13. URL: https://docs.python.org/3/whatsnew/3.13.html (дата звернення: 23.09.2025)
2. Will Numba work for my code? URL: https://numba.pydata.org/numba-doc/dev/user/5minguide.html#will-

numba-work-for-my-code (дата звернення: 26.09.2025)
3. Github python/cpython. URL: https://github.com/python/cpython (дата звернення: 29.09.2025)
4. pyRAPL 0.2.3.1. URL: https://pypi.org/project/pyRAPL/ (дата звернення: 26.09.2025)
5. Github Mao771/energy. URL: https://github.com/Mao771/energy . (дата звернення: 29.09.2025)
6. Stoico, Vincenzo & Dragomir, Andrei & Lago, Patricia. (2025). An Empirical Study on the Performance and

Energy Usage of Compiled Python Code. 10.48550/arXiv.2505.02346.
7. SIDDIQUI, Ali. Litmus Testing CPython Without the Global Interpreter Lock. 2025. Master's Thesis. University

of Illinois at Chicago.

Москаленко Д. О., Базилевич В. М., Казнадій С. П.
Національний університет «Чернігівська політехніка»,

кафедра інформаційних та комп’ютерних систем, Чернігів, Україна
Контактний автор: Москаленко Данііл Олександрович,

e-mail: daniilmoskalenko504@gmail.com.

КОМП’ЮТЕРНА МОДЕЛЬ ПОБУДОВИ ПЕРЕЛІКУ РИЗИКІВ БЕЗПЕКИ КРИТИЧНОЇ
ІНФРАСТРУКТУРИ СЕКТОРАЛЬНОГО РІВНЯ

Анотація.
В роботі визначено критерії побудови переліку ризиків безпеки критичної інфраструктури

секторального рівня. Серед них виокремлено уразливість, загрозу, наслідки. Побудовано
комп’ютерну модель їх отримання для обраного сектору критичної інфраструктури.

Ключові слова: комп’ютерна модель; перелік ризиків; безпека критичної інфраструктури;
секторальний рівень.

https://docs.python.org/3/whatsnew/3.13.html
https://numba.pydata.org/numba-doc/dev/user/5minguide.html#will-numba-work-for-my-code
https://numba.pydata.org/numba-doc/dev/user/5minguide.html#will-numba-work-for-my-code
https://github.com/python/cpython
https://pypi.org/project/pyRAPL/
https://github.com/Mao771/energy

50

Вступ
Безпека критичної інфраструктури забезпечується на національному, секторальному та

об’єктовому рівнях. Значущість відповідних завдань зумовлена необхідністю безперервного
виконання життєво важливих функцій і надання життєво важливих послуг. Їх належне
забезпечення може ускладнюватися наявністю уразливостей і загроз, реалізація яких призводить
до інцидентів. Відтак побудова комп’ютерної моделі для побудови переліку ризиків безпеки
критичної інфраструктури на секторальному рівні є актуальним науково-практичним завданням.

Методологічною основою запропонованої комп’ютерної моделі побудови переліку ризиків
слугують настанови вітчизняних і міжнародних нормативних документів. Ключовою
особливістю практичної реалізації є відбір об’єктів зі спільною функціональною спрямованістю,
сукупність яких утворює відповідний сектор критичної інфраструктури. Для обраного сектора
визначається перелік ризиків безпеки, кожний елемент якого характеризується критеріями,
зокрема уразливістю, загрозою та наслідками.

Матеріали та методи
За основу побудови комп’ютерної моделі побудови переліку ризиків безпеки критичної

інфраструктури секторального рівня взято настанови вітчизняних і міжнародних нормативних
документів. Характерною особливістю її практичного реалізування є обирання об’єктів зі
спільною функціональною спрямованістю. Загалом ними утворюється сектор критичної
інфраструктури. Для обраного сектору визначається перелік ризиків безпеки. Кожен його елемент
задається такими критеріями як, наприклад, уразливість, загроза, наслідки.

Результати
Синтезовано комп’ютерну модель побудови переліку ризиків. Вона передбачає інтеграцію

основних функцій, таких як вибір секторів, підсекторів, оцінка ризиків і визначення їх впливу на
критичну інфраструктуру. Особлива увага приділяється відповідності національним
нормативним документам, україномовній локалізації та зручності використання. Це забезпечує
створення засобу, який відповідає потребам спеціалістів у галузі захисту критичної
інфраструктури. З огляду на це, визначено функційні та нефункційні вимоги комп’ютерної моделі
побудови переліку ризику безпеки критичної інфраструктури секторального рівня. Реалізацію ПЗ
зображено на рисунку.

Рисунок – Інтерфейс програмного засобу

51

Висновки
Розроблено програмний засіб побудови переліку ризиків безпеки критичної інфраструктури

на секторальному рівні. Реалізацію виконано мовою Python з використанням інтегрованого
середовища PyCharm 2024.3, що забезпечило високі показники ефективності розроблення. Вибір
технологічного стеку обґрунтовано лаконічністю синтаксису Python, наявністю розвиненої
екосистеми бібліотек і зрілих засобів інтеграції. Особливу увагу приділено створенню інтуїтивно
зрозумілого графічного інтерфейсу користувача (GUI) на основі спеціалізованих бібліотек, що
істотно спрощує взаємодію з програмним засобом. Крім того, використання Python уможливило
реалізацію функцій оброблення даних, їхньої валідації та генерації звітів, які відповідають
сучасним вимогам до програмного забезпечення у сфері безпеки критичної інфраструктури.

Список використаних джерел
1. International Organization for Standardization. ISO 31000:2018 Risk management — Guidelines : стандарт

[Електронний ресурс]. Geneva: ISO, 2018. URL: https://www.iso.org/standard/65694.html (дата звернення: 12.08.2025).
2. National Institute of Standards and Technology. Guide for Conducting Risk Assessments : NIST Special

Publication 800-30 Rev. 1 [Електронний ресурс]. Gaithersburg, MD: NIST, 2012. URL:
https://csrc.nist.gov/pubs/sp/800/30/r1/final (дата звернення: 19.08.2025).

3. Directive (EU) 2022/2555 of the European Parliament and of the Council of 14 December 2022 on measures for a high
common level of cybersecurity across the Union (NIS 2 Directive) [Електронний ресурс]. Official Journal of the European Union,
27.12.2022, L 333, p. 80–152. URL: https://eur-lex.europa.eu/eli/dir/2022/2555/oj/eng (дата звернення: 03.09.2025).

4. Про критичну інфраструктуру : Закон України від 16.11.2021 № 1882-IX [Електронний ресурс]. URL:
https://zakon.rada.gov.ua/go/1882-20 (дата звернення: 18.09.2025).

5. International Organization for Standardization; International Electrotechnical Commission. ISO/IEC 27005:2022 —
Information security, cybersecurity and privacy protection — Guidance on managing information security risks : стандарт
[Електронний ресурс]. Geneva: ISO/IEC, 2022. URL: https://www.iso.org/standard/80585.html (дата звернення: 27.09.2025).

Москаленко С. С., Лисенко Д. Е.

Національний університет «Чернігівська політехніка»,
кафедра інформаційних та комп’ютерних систем, Чернігів, Україна

Контактний автор: Москаленко Світлана Сергіївна,
e-mail: svitlanamoskalenko4@gmail.com,

ORCID: 0009-0001-0243-0800

МЕТОДИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ КІБЕРБЕЗПЕКИ
МЕРЕЖЕВОЇ ІНФРАСТРУКТУРИ

Анотація. У роботі розглядаються різні підходи до кібербезпеки, серед яких важливе місце

займає модель Zero Trust, яка орієнтована на посилений контроль доступу. Окремо
підкреслюється користь застосування програм з відкритим кодом (FOSS), адже це робить
дослідження більш прозорими й доступними для перевірки. Поряд із цим відзначається, що
поєднання інтелектуальних технологій із процесами автоматизації допомагає зменшити ризики
витоку конфіденційних даних та робить мережеву інфраструктуру стійкішою до нових видів атак.
Комплексне впровадження таких рішень потребує належного управління та постійного
моніторингу для досягнення максимальної ефективності кібербезреки мережевої інфраструктури.

Ключові слова: кібербезпека; мережева інфраструктура; Zero Trust; FOSS; моніторинг.

mailto:svitlanamoskalenko4@gmail.com

52

Вступ
Сьогодні мережеві системи постійно стикаються з кібератаками, що змушує постійно шукати

ефективні способи захисту. Зростання обсягів переданих даних та поширення хмарних сервісів
призводить до підвищення навантаження на мережеву інфраструктуру. Це створює нові вектори атак
і робить традиційні методи захисту недостатніми. Класичні міжмережеві екрани та антивірусні
рішення зосереджені переважно на локальному захисті, тоді як сучасні кібератаки дедалі частіше
здійснюються із середини корпоративного середовища або через компрометованих користувачів.

Метою роботи є дослідження та систематизація просунутих методів кіберзахисту мережевої
інфраструктури з урахуванням їх інтеграції у середовища з відкритим програмним забезпеченням.

Матеріали та методи
У дослідженні застосовано низку інструментів FOSS для моделювання та аналізу мережевої

безпеки: Suricata IDS/IPS, Zeek, Wazuh, ELK Stack.
Методологія дослідження базується на моделюванні мережевих атак (DoS, brute force, ARP

spoofing) у віртуальному середовищі з подальшим аналізом результатів виявлення
та нейтралізації інцидентів за допомогою цих інструментів.

Результати
Експериментальний аналіз включав моделювання різних типів атак (DoS, brute force, ARP-

spoofing) та перевірку їх виявлення запропонованими системами кіберзахисту.
Завдяки архітектуру Zero Trust виявлено, що впровадження принципу багатофакторної

автентифікації суттєво ускладнює несанкціонований доступ. Навіть при компрометації одного
вузла зловмисник не отримував автоматичного доступу до решти сегментів мережі. Ймовірність
успішної атаки зменшилась більш ніж на 65%.

Під час моделювання DoS-атаки Suricata IDS зафіксувала 95% шкідливих пакетів, та 92%
під час спроб автентифікації методом грубої сили. Це свідчить про високу чутливість до типових
атак мережевого рівня.

Під час тестування з внутрішніми загрозами Zeek виявив підозрілу активність користувачів
(незвичайно часті звернення до служб та відхилення у розмірах пакетів). Графік мережевого
трафіку чітко демонстрував піки, що відповідають часу атаки.

Система Wazuh централізовано збирала події з усіх вузлів та генерувала звіти
з автоматичними сповіщеннями. Наприклад, після кількох невдалих спробах входу адміністратор
миттєво отримував повідомлення з деталізацією джерела загрози.

Для наочності результати узагальнено у таблиці:

Система Тип атаки Виявлення
(%) Особливості

Zero Trust Несанкціонований
доступ

↓ ризику на
~65% ізоляція сесій

Suricata IDS DoS / brute force 95% / 92% сигнатурне + поведінкове виявлення
Zeek Внутрішні загрози ~90% виявлення аномалій поведінки
Wazuh Логін-атаки ~94% автоматизовані сповіщення

53

Діаграма порівняння ефективності виявлення атак різними системами

Обговорення
Порівняно з комерційними рішеннями, FOSS-інструменти пропонують більшу прозорість

та можливість легкої адаптації до потреби організації. Проте вони вимагають вищого рівня
адміністративних навичок та обчислювальних ресурсів.

Використання систем автоматизованого реагування (SOAR) та інструментів машинного
навчання дозволяє збільшити швидкість реагування та зменшити людський фактор. Перспективним
напрямом є впровадження інтелектуальних систем у середовища хмарних обчислень.

Висновки
У роботі проведено аналіз сучасних методів забезпечення кібербезпеки мережевої

інфраструктури зосереджуючись на використанні програмного забезпечення з відкритим
вихідним кодом. Використання FOSS-рішень дозволяє досягти високого рівня захищеності
мережевих систем, зберігаючи при цьому прозорість та відтворюваність досліджень. Подальші
дослідження треба спрямувати на інтеграцію цих методів у великомасштабні корпоративні
та хмарні інфраструктури.

Список використаних джерел
1. Rose, S., Borchert, O., Mitchell, S., & Connelly, S. Zero Trust Architecture. NIST Special Publication 800-207, 2020.
2. Suricata IDS/IPS. URL: https://suricata.io (дата звернення: 10.09.2025).
3. Zeek Network Security Monitor. URL: https://zeek.org (дата звернення: 08.09.2025).
4. Wazuh Security Platform. URL: https://wazuh.com (дата звернення: 12.09.2025).

https://suricata.io/
https://zeek.org/
https://wazuh.com/

54

Олефіренко Р. А.
НУ “Чернігівська політехніка”,

кафедра ІКС, місто Чернігів, Україна
Контакти автора: Руслана Олефіренко,

e-mail: normantarrer@gmail.com.

МОДЕЛЮВАННЯ ТА РОЗРОБКА РОБОТИЗОВАНОГО РОЗКИДАЧА ДОБРИВ З
АДАПТИВНИМ КОНТРОЛЕМ ДОЗИ

Анотація.
У роботі розглядається проблема підвищення ефективності внесення мінеральних добрив за

допомогою автоматизованих технічних засобів. Запропоновано підхід до моделювання та розробки
роботизованого розкидача добрив із системою адаптивного контролю дози, яка враховує умови
середовища та особливості ґрунту. Розроблена модель дозволяє аналізувати параметри руху та
рівномірність розподілу добрив, що є ключовими факторами для забезпечення високої
продуктивності та зменшення витрат ресурсів. У роботі проведено дослідження алгоритмів
регулювання, які забезпечують оптимальну подачу добрив відповідно до заданих агротехнологічних
вимог. Практична значущість полягає у можливості застосування розробленої системи для точного
землеробства, що сприятиме підвищенню врожайності та зниженню негативного впливу на довкілля.

Ключові слова: відкрите ПЗ; освіта; наука; бізнес; підприємництво, моделювання,
роботизований, адаптивний контроль дози, автоматизація, точне землеробство, алгоритми
регулювання, енергоефективність, оптимізація подачі, агротехнологічні процеси.

Вступ
Сучасне сільське господарство дедалі активніше інтегрує технології автоматизації та

роботизації з метою підвищення ефективності агротехнологічних процесів. Одним із ключових
напрямів точного землеробства є оптимізація внесення мінеральних добрив, оскільки цей процес
суттєво впливає на врожайність, економічність виробництва та екологічну безпеку. Використання
роботизованих систем дозволяє підвищити точність розподілу матеріалів, зменшити витрати
ресурсів та забезпечити стабільну якість обробки полів.

Традиційні розкидачі добрив не враховують неоднорідність ґрунтів та реальні умови
середовища, через що виникають перевитрати ресурсів, зниження врожайності та негативний
вплив на довкілля. Відсутність адаптивного регулювання дози добрив призводить до
нерівномірного внесення, що унеможливлює повну реалізацію потенціалу технологій точного
землеробства. Тому виникає необхідність у створенні інтелектуальних систем розкидання з
можливістю моделювання процесів і гнучкого управління.

Метою роботи є моделювання та розробка роботизованого розкидача добрив з адаптивним
контролем дози, здатного забезпечити рівномірне внесення добрив із урахуванням умов
середовища та агротехнологічних вимог. Досягнення цієї мети передбачає створення
математичної моделі системи, розробку алгоритмів адаптивного регулювання та апробацію
технічних рішень, що дозволять підвищити ефективність процесу внесення добрив та знизити
його ресурсні й екологічні витрати.

mailto:normantarrer@gmail.com

55

Матеріали та методи
Дані використані для аналізу та виршення проблеми:
 карти ґрунтів (рівень родючості, вологість, кислотність);
 польові дані з сенсорів (швидкість руху, ширина захвату, норма внесення добрив,

показники GPS/ГЛОНАСС);
 експериментальні заміри рівномірності внесення добрив.
 відкриті бази агроданих (FAO, OpenLandMap), власні польові вимірювання.
З допомогою MATLAB проведено моделювання динаміки системи.
Обробка геоданих здійснюватиметься з допомогою QGIS (відкрите ПЗ для просторового

аналізу).
Розробка електроніки на основі платформи Arduino IDE (прошивка мікроконтролерів, ESP32).
Контроль версій з допомогою інструментів Git + GitHub.
Результати
Було проведено моделювання процесу розкидання добрив у середовищі Gazebo + ROS 2

для двох режимів:
1. без адаптивного контролю (фіксована подача),
2. з адаптивним контролем дози (регулювання PID + дані сенсорів).
Таблиця 1 – Порівняння рівномірності внесення добрив

Параметр Без адаптивного контролю З адаптивним контролем
Середнє відхилення норми
(%)

18,5 5,2

Коефіцієнт варіації (%) 22,1 7,8
Втрати добрив (%) 14,3 3,5
Час внесення на 1 га (хв) 27 25

Потенційно зменшиться енергоспоживання системи. За оцінкою економічного ефекту при
розрахунках на площі 100 га:

 економія добрив — до 8–12% залежно від умов поля;
 скорочення витрат на ПММ та обслуговування — ≈7%;
 потенційне зростання врожайності — +4–6%.
Результати підтверджують практичну доцільність використання системи, адже поєднується

економія ресурсів і підвищення ефективності агровиробництва.
Обговорення
Отримані результати показали, що використання роботизованого розкидача з адаптивним

контролем дози дозволяє значно зменшити відхилення від запланованої норми внесення добрив
(у 3–4 рази порівняно з традиційною системою). Це свідчить про підвищення точності розподілу
та більш ефективне використання ресурсів. Зниження коефіцієнта варіації та перевитрат добрив
демонструє стабільність роботи системи за різних умов середовища. Додатково вдалося досягти
зменшення енергоспоживання, що позитивно впливає на собівартість агропроцесів.

Попри позитивні результати, розроблена система має низку обмежень. Моделювання
проводиться у віртуальному середовищі, що не враховує всіх польових факторів (рельєф, вологість
ґрунту, забруднення сенсорів). Точність GPS обмежується похибкою до 2 м, що може впливати на
рівномірність внесення у реальних умовах. Система контролю випробовувалась на спрощеній моделі
дозатора (один тип добрив, фіксована швидкість руху). Потребує тестування у реальних польових
експериментах для перевірки стійкості роботи алгоритмів у динамічних умовах.

56

Традиційні розкидачі добрив (без автоматизації) працюють за принципом фіксованої
подачі матеріалу, що призводить до значних перевитрат і нерівномірного розподілу. Комерційні
системи точного землеробства (John Deere, Amazone, Rauch) вже мають елементи
автоматичного регулювання, однак їх вартість висока, а адаптація до малих і середніх господарств
обмежена. Розроблена система на базі відкритого ПЗ (FOSS) і недорогих мікроконтролерів
забезпечує доступність і можливість кастомізації. Це робить її конкурентною для освітніх,
дослідницьких і практичних завдань.

Перспективи застосування
1. Агросектор: впровадження у фермерських господарствах для зменшення витрат добрив

і підвищення врожайності.
2. Освіта та наука: використання як навчального стенду для вивчення робототехніки,

адаптивних систем управління, точного землеробства.
3. Розвиток технологій: інтеграція з безпілотними наземними платформами (UGV),

використання мультисенсорних систем (NDVI-камери, вологоміри), застосування машинного
навчання для прогнозування доз внесення.

4. Екологія: мінімізація негативного впливу на довкілля за рахунок зменшення
надлишкового внесення хімічних речовин.

Висновки
У дослідженні створено модель та прототип роботизованого розкидача добрив з адаптивним

контролем дози, що забезпечує підвищену рівномірність розподілу та зниження перевитрат
ресурсів. Запропоновані алгоритми керування довели свою ефективність у симуляційних
експериментах, продемонструвавши зменшення відхилення норми внесення у 3–4 рази порівняно
з традиційними підходами. Практична цінність роботи полягає у поєднанні доступних апаратних
рішень та відкритого програмного забезпечення, що робить систему придатною для малих і
середніх господарств.

Подальші дослідження передбачають проведення польових випробувань, інтеграцію
системи з мультисенсорними модулями (камери NDVI, датчики вологості), використання методів
машинного навчання для прогнозування дозування та розширення можливостей системи до
роботи з різними видами добрив і змінними агротехнологічними умовами.

Подяки
Хочу висловити вдячність в свій час найкращій студентці політеху Анні Пономарчук за те, що

ділилась своїм досвідом і баченням в сфері агрономії. Її студентська та викладацька діяльність хоч і
побажно, але вплинули на вибір тематики кваліфікаційної роботи і розкриття важливості теми.

Список використаних джерел
1. Griepentrog, H. W., Søgaard, H. T., Nielsen, H., & Blackmore, B. S. (2003). Testing and Evaluation of Autonomous

Fertilizer Application. Automation Technology for Off-Road Equipment, 1, 77–84.
2. Saha, S., & Mandal, S. (2019). Development of a Smart Fertilizer Applicator with IoT based Control. International

Journal of Engineering Research & Technology, 8(6), 204–208.
3. Сисоєв, В. М., & Чернявський, В. В. (2018). Робототехнічні системи у сільському господарстві: навчальний

посібник. Київ: НУБіП України.
4. Тарасов, В. І. (2020). Технології точного землеробства: сучасний стан та перспективи. Аграрна наука та

практика, 2(18), 45–52.

57

Rohovenko M. A.1 Bachelor student grp. CI-222 Kaznadiy S. P.2 senior lecturer
1Chernihiv Polytechnic National University,

Information and Computer Systems Department, Chernihiv, Ukraine
2Chernihiv Polytechnic National University,

Information and Computer Systems Department, Chernihiv, Ukraine
Contact author: Mykhailo Rohovenko,

email: misha.rogovenko@gmail.com

FREE/OPEN SOURCE SOFTWARE IN DATA ANALYTICS LEARNING

Annotation. Data analytics is a modern and important field. However, as a new, nuanced and

closely related to information, this field requires skills, experience and tuned software to handle.
Professional software is not free, though. Which means it’s counterproductive to use it for educational
purposes. Here, free software and it’s libraries are exactly the solution which makes studying data
analytics cheap and easy. Entering such a field can be made free and easy with a Python programming
language, and such libraries as cmath, NumPy, pandas scikit-learn, Statsmodels for calculations and also
seaborn and Matplotlib for visualization.

Key words: FOSS, education, analytics.
Introduction
In current day and age, we are surrounded by information, we consume it even without realizing it

in the process. Consequently, the whole field of data analytics exists and strives. It is important for
businesses for the most part and while professionals and companies can afford specialized software, those
who are just learning the ropes – not so much. This is exactly why FOSS is very useful in the process of
studying data analytics. To be precise, this thesis is dedicated to the usage of Python language and its
freely available libraries in the learning of data analysis basics.

Materials and means
The basis for this cheap learning process is the Python[1] programing language. It is a high level

easy to learn language with a multitude of libraries, which are also used for the topic at hand.
Cmath[2] — This module provides access to mathematical functions for complex numbers. It allows for

the calculations that aren’t possible with stock capabilities of Python itself which are most of what’s needed
during data analysis. It’s also forgiving and provides basic math constants which are required for calculations.

NumPy[3] is a Python library, adding support for large, multi-dimensional arrays and matrices,
along with a large collection of high-level mathematical functions to operate on these arrays. This
extension provides comfortable ways to handle arrays which are a common way to store data. Also it
provides RNGs and other functions that shorten the work process and help fill in the gaps during analysis.

Matplotlib[4] is a plotting library for the Python programming language and its numerical
mathematics extension NumPy. Plots provided by this extension are the basics of data visualization,
which are absolutely necessary while handling both big and small amounts of data.

Pandas[5] is a fast, powerful, flexible and easy to use open source data analysis and manipulation
tool, built on top of the Python programming language. One of the most on-point extensions to be used.
It works directly with data, knows the ways to arrange it and it’s exactly what’s used to load datasheets
into the programs written.

https://www.python.org/

58

Seaborn[6] is a Python data visualization library based on matplotlib. It provides a high-level interface
for drawing attractive and informative statistical graphics. Yet another, this time – more sophisticated
visualization tool. It has more options adaptability and customization than the one it is based upon.

scikit-learn[7] is a free and open-source machine learning library for the Python programming
language.

Statsmodels[8] is a Python module that provides classes and functions for the estimation of many
different statistical models, as well as for conducting statistical tests, and statistical data exploration.

Results
As shown at the figure 1 below, using all of these freely available tools, it’s perfectly possible to

create programs that process data in a multitude of ways, rearrange it, fix absence of entrances and their
creations won’t take much time or money from the student.

Figure 1 – Stats of a patients dataset before and after processing

Discussion
Main advantages of using python and its freely available libraries for learning data analytics are

costs and simplicity.
From an educational standpoint it’s an absolute pro, as it allows for very cheap and easy

introduction to a complex field.
At the same time the con is how unspecialized such approach is. By using it students will learn use

of python and its libraries but not professional, specialized software. Which is of a certain detriment as
it’s always hard to switch tools.

Conclusions
As we can see, usage of such relatively small amount of libraries and extensions really can allow

for a cheap and effective way to educate people about data analytics.
It really is a free way to provide easily accessible knowledge to students, that would get an

opportunity to dip into the new and popular field without unreasonable expenses.
Lastly by the usage of Python it truly increases accessibility because of its overall simplicity and

popularity
Sources
1. Pythontm URL: https://www.python.org/ (last visited 29.09.2025).
2. cmath – mathematical functions for complex numbers URL: https://docs.python.org/3/library/cmath.html (last

visited 29.09.2025).
3. The fundamental package for scientific computing with Python URL: https://numpy.org/ (last visited 29.09.2025).

https://matplotlib.org/
https://www.python.org/
https://docs.python.org/3/library/cmath.html
https://numpy.org/

59

4. Matplotlib: Visualization with Python URL: https://matplotlib.org/ (last visited 29.09.2025).
5. Fast, powerful, flexible and easy to use open source data analysis and manipulation tool URL:

https://pandas.pydata.org/ (last visited 29.09.2025).
6. Seaborn: statistical data visualization URL: https://seaborn.pydata.org/ (last visited 29.09.2025).
7. Machine learning in Python URL: https://scikit-learn.org/stable/ (last visited 29.09.2025).
8. Statistical models, hypothesis tests, and data exploration URL: https://www.statsmodels.org/stable/index.html (last

visited 29.09.2025).

Семака Є. І., Лисенко Д. Е.
Національний університет «Чернігівська політехніка»,

кафедра інформаційних та комп’ютерних систем, Чернігів, Україна
Контактний автор: Семака Євгеній Ігорович,

e-mail: j4cksonsf@gmail.com,
ORCID: 0009-0009-8549-177X

ПРОЕКТУВАННЯ ТА УПРАВЛІННЯ ВІРТУАЛІЗОВАНИМИ МЕРЕЖАМИ ЗА

ДОПОМОГОЮ СИСТЕМИ МОНІТОРИНГУ ZABBIX

Анотація
В роботі розглядаються підходи до проєктування та управління віртуалізованими мережами з

використанням системи моніторингу з відкритим кодом Zabbix. Наведено основні принципи
проєктування архітектури віртуалізованих середовищ, підходи до балансування навантаження,
резервування та контролю продуктивності. Окрему увагу приділено можливостям Zabbix щодо
автоматичного виявлення вузлів, збору метрик, прогнозування навантажень і забезпечення високої
доступності. Представлений підхід демонструє ефективність інтеграції відкритих програмних рішень
у процес моніторингу ІТ-інфраструктури, що сприяє підвищенню її надійності й зниженню витрат.

Ключові слова: відкрите ПЗ; Zabbix; віртуалізація; мережі; моніторинг.
Вступ
Віртуалізовані мережі набувають дедалі більшого значення завдяки своїй гнучкості та

можливості масштабування, проте управління ними пов’язане зі складністю забезпечення
стабільності та безпеки. З розвитком хмарних технологій та інфраструктури як послуги (IaaS)
віртуалізовані мережі стали стандартом для сучасних компаній. Вони дозволяють гнучко керувати
ресурсами та забезпечувати безперервність бізнес-процесів. Водночас зростає потреба в ефективному
управлінні та контролі таких середовищ. Традиційні методи моніторингу часто не враховують
динамічність віртуалізації, тому постає необхідність інтеграції систем відкритого коду, зокрема
Zabbix, які забезпечують масштабованість і розширюваність. Метою дослідження є розробка підходу
до проєктування та управління віртуалізованими мережами з використанням Zabbix.

Матеріали та методи
Для дослідження застосовано платформу віртуалізації VMware ESXi (версія 7.0), а також

систему моніторингу Zabbix 6.0 LTS. Середовище включало три гіпервізори, об’єднані у кластер, з
розгортанням понад 20 віртуальних машин. Використовувалися шаблони Zabbix для моніторингу
гіпервізорів, мережевих інтерфейсів і сховищ даних. Для забезпечення відтворюваності конфігурації
були задокументовані параметри моніторингу: інтервал опитування — 60 секунд, тригери для
перевищення завантаження CPU > 75% та використання RAM > 70%.

https://matplotlib.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/stable/
https://www.statsmodels.org/stable/index.html
mailto:j4cksonsf@gmail.com

60

Результати
Впровадження системи моніторингу дозволило виявити «вузькі місця» інфраструктури,

зокрема перевантаження мережевих інтерфейсів і нерівномірний розподіл ресурсів між
віртуальними машинами. Використання дашбордів Zabbix забезпечило візуалізацію ключових
показників, що дозволило оперативно приймати рішення. Було зафіксовано зниження середнього
часу реакції на інциденти на 35%.

Рисунок 1 – Дашборд

Обговорення
Отримані результати підтверджують ефективність застосування Zabbix у віртуалізованих

середовищах. Порівняно з традиційними системами моніторингу (Nagios, PRTG), Zabbix має
ширші можливості масштабування та підтримує автоматичне виявлення нових вузлів.
Обмеженням є необхідність ручного налаштування деяких специфічних метрик, проте завдяки
гнучкості шаблонів це завдання вирішується. Перспективним напрямом є інтеграція Zabbix із
системами автоматизації (Ansible, Terraform) для створення самовідновлюваних інфраструктур.

Висновки
Запропонований підхід до проєктування та управління віртуалізованими мережами з

використанням Zabbix забезпечує:
• централізований моніторинг і візуалізацію показників;
• підвищення продуктивності та доступності сервісів;
• скорочення часу реагування на інциденти.
Подальші дослідження передбачають розширення інтеграції з системами автоматизації та

аналіз великих даних для прогнозування навантажень.
Подяки
Подяка спільноті Zabbix за підтримку відкритого програмного забезпечення та можливість

його застосування в наукових і практичних цілях.
Список використаних джерел
1. Oetiker T., Rademacher H. Monitoring Large-Scale IT Infrastructures. Springer, 2020.
2. Zabbix Documentation. URL: https://www.zabbix.com/documentation (дата звернення: 25.09.2025).

61

Казимір Г. С.
здобувач другого (магістерського) рівня вищої освіти гр. МКІ-241

Науковий керівник – Зайцев С.В. д.т.н., професор
Національний університет «Чернігівська політехніка» (м. Чернігів, Україна)

МАСШТАБУВАННЯ СИСТЕМ ОНЛАЙН-КОНФЕРЕНЦІЙ

З ВИКОРИСТАННЯМ WEBRTC ТА DOCKER

Ключові слова: WebRTC, Docker, онлайн-конференції, мультимедійний зв’язок,

масштабованість.
У сучасних умовах дистанційної роботи, онлайн-навчання та проведення наукових

конференцій зростає потреба у високоефективних технологіях для організації онлайн-
конференцій, що забезпечують якісний мультимедійний зв’язок та гнучке масштабування.
Однією з ключових технологій, яка дозволяє реалізувати передачу аудіо, відео та текстових
повідомлень у реальному часі, є WebRTC (Web Real-Time Communication). Вона забезпечує обмін
медіаконтентом та спільне використання екрану без необхідності встановлення додаткового
програмного забезпечення на стороні користувача.

Для ефективного розгортання та масштабування систем онлайн-конференцій доцільно
використовувати Docker — технологію контейнеризації, яка ізолює сервіси, забезпечує
консистентне середовище розробки та спрощує управління компонентами системи. Контейнери
Docker дозволяють швидко розгортати сервіси у локальних або хмарних середовищах та
динамічно збільшувати їх кількість відповідно до навантаження, що критично для онлайн-
конференцій з великою кількістю учасників.

Архітектура системи
Сучасна платформа для онлайн-конференцій зазвичай базується на мікросервісній

архітектурі. Основні компоненти можуть включати:
1. Сервер сигналізації – відповідає за встановлення з’єднань між учасниками та обмін

метаданими (наприклад, SDP-повідомленнями WebRTC).
2. Медіа-сервер (SFU/MCU) – забезпечує маршрутизацію аудіо та відео потоків,

оптимізацію якості медіа та підтримку запису сесій.
3. Фронтенд-додаток – інтерфейс для користувачів з підтримкою WebRTC API, який

забезпечує кросплатформну сумісність і мінімальні затримки.
4. Сервіси допоміжного функціоналу – аналітика, управління користувачами, інтеграція з

базами даних та системами аутентифікації.
Docker дозволяє ізолювати кожен сервіс у власному контейнері, що забезпечує незалежність

компонентів, легке масштабування та швидке оновлення системи без простою основних сервісів.
У поєднанні з оркестраторами контейнерів, такими як Kubernetes, можливо автоматизувати
управління ресурсами та масштабування у відповідь на зміну навантаження.

Переваги використання WebRTC та Docker
Мінімальні затримки – WebRTC забезпечує прямий обмін медіа між клієнтами, що дозволяє

реалізувати якісний відеозв’язок у реальному часі.
Контейнеризація та ізоляція – Docker гарантує незалежність сервісів та спрощує керування

їхніми ресурсами.

62

Гнучке масштабування – можливо швидко додавати нові інстанси медіа-серверів у відповідь
на збільшення кількості учасників.

Легка інтеграція додаткового функціоналу – аналітика, запис сеансів, автоматизоване
управління ресурсами.

Кросплатформність – WebRTC підтримується у більшості сучасних браузерів та мобільних
платформ, що забезпечує широку доступність сервісу.

Висновки. Поєднання WebRTC і Docker створює основу для надійної, гнучкої та
масштабованої платформи для онлайн-конференцій будь-якого масштабу. Такий підхід
забезпечує високу продуктивність системи, зменшує затримки в передачі аудіо та відео, спрощує
адміністрування та дозволяє швидко інтегрувати нові функції, що робить його оптимальним
вибором для сучасних дистанційних сервісів комунікації.

Список використаних джерел:
1. Google Developers. WebRTC: Real-time communication for the web. https://webrtc.org
2. Merkel, D. “Docker: Lightweight Linux Containers for Consistent Development and Deployment.” Linux Journal, 2014.
3. Jitsi Meet. Open-source video conferencing solution. https://jitsi.org/jitsi-meet/
4. Mozilla Developer Network. WebRTC API. https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
5. Red Hat. Kubernetes and container orchestration. https://www.redhat.com/en/topics/containers/what-is-kubernetes
6. W3C. WebRTC 1.0: Real-time Communication Between Browsers. https://www.w3.org/TR/webrtc/

Іванов В. В., Лисенко Д. Е.
Національний університет «Чернігівська політехніка»,

кафедра інформаційних та комп’ютерних систем, м. Чернігів, Україна
Контактний автор: Іванов Валерій Валерійович,

e-mail: zirteks@i.ua
ORCID:0009-0009-5132-6127

МЕРЕЖЕВА ВІРТУАЛІЗАЦІЯ В ХМАРНИХ СЕРЕДОВИЩАХ

Анотація
Мережева віртуалізація є ключовим компонентом сучасних хмарних середовищ, забезпечуючи

гнучке, масштабоване та безпечне управління мережевими ресурсами. У даній роботі розглянуто
проблеми традиційної мережевої інфраструктури у контексті хмарних обчислень та запропоновано
використання програмно-визначених мереж (SDN) та віртуалізації мережевих функцій (NFV) як
рішень. Представлено експериментальне середовище на базі FOSS-інструментів (Mininet, Open
vSwitch), де моделюється віртуальна мережа в хмарному середовищі. Отримані результати
демонструють покращення продуктивності, ізоляції трафіку та зниження витрат на інфраструктуру.

Ключові слова: мережева віртуалізація; хмарні обчислення; SDN; NFV; FOSS.
Вступ
Інтенсивний розвиток хмарних технологій вимагає нових підходів до побудови мережевої

інфраструктури, здатної швидко адаптуватися до змінних навантажень. Традиційні мережі мають
обмеження щодо масштабованості, управління та безпеки. Метою цього дослідження є аналіз та
демонстрація можливостей мережевої віртуалізації як технологічної бази для побудови
ефективних хмарних середовищ. Особливу увагу приділено FOSS-рішенням, що дозволяють
створювати повноцінні тестові середовища з мінімальними затратами.

mailto:zirteks@i.ua

63

Матеріали та методи
1. Програмно-апаратна основа дослідження
Експериментальне середовище було розгорнуто на базі віртуалізації для зручності

масштабування та ізоляції.
Апаратна платформа: ноутбук з процесором Intel Core i7-1165G7 (4 ядра, 8 потоків, базова

частота 2.8 ГГц), 16 ГБ оперативної пам’яті та SSD-накопичувачем на 512 ГБ.
Гіпервізор: VirtualBox 7.0, що дозволив створити окремі віртуальні машини (ВМ) для

емулятора Mininet, контролера Ryu та моніторингових інструментів.
Гостьова ОС: Ubuntu 22.04 LTS як стабільна та підтримувана платформа для розгортання

FOSS-інструментів.
Вибір саме такого підходу пояснюється можливістю швидкого відновлення системи,

портативністю та гнучкістю при моделюванні різних сценаріїв.
2. Використані програмні інструменти
2.1. Mininet (v2.3.0)
Mininet використано як основний емулятор мережі. Він дозволяє запускати віртуальні хости,

комутатори та маршрутизатори в межах одного ядра Linux, імітуючи роботу реальної мережі.
Функціонал: створення топологій (лінійна, дерево, leaf-spine), задання параметрів лінків

(затримка, пропускна здатність, втрата пакетів).
Причина вибору: підтримка OpenFlow, інтеграція з Open vSwitch, сумісність із різними

SDN-контролерами.
2.2. Open vSwitch (v3.1.1)
Open vSwitch (OVS) є віртуальним комутатором, який підтримує управління через протокол

OpenFlow.
Роль у дослідженні: забезпечення маршрутизації та комутації трафіку в моделі, а також

реалізація механізмів ізоляції VLAN/VXLAN.
Особливості: підтримка QoS, фільтрації пакетів, моніторингу потоків і журналювання.
Причина вибору: OVS — де-факто стандарт у сфері мережевої віртуалізації,

використовується в OpenStack, Kubernetes (OVN) та VMware NSX.
2.3. Ryu SDN Controller (v4.34)
Ryu — це SDN-контролер з відкритим кодом, написаний на Python.
Функціонал: централізоване управління мережею через OpenFlow 1.3+, написання власних

додатків для маршрутизації та політик безпеки.
Роль у дослідженні:
- створення логіки маршрутизації трафіку;
- реалізація ізоляції між підмережами (через NFV-механізми);
- збір статистики про мережеві потоки.
Причина вибору: гнучкість, простота розширення та активна спільнота.
3. Архітектура і топологія середовища
Для дослідження було обрано топологію типу “leaf-spine”, яка активно використовується

у сучасних дата-центрах і хмарних середовищах.
Spine-рівень: два магістральні комутатори, що з’єднують усі leaf-вузли між собою,

забезпечуючи низьку затримку та високу пропускну здатність.
Leaf-рівень: три leaf-комутатори, кожен з яких обслуговує групу віртуальних хостів.

64

Підмережі: створено три ізольовані сегменти (Tenant A, Tenant B, Tenant C), що імітують
багатокористувацьке середовище (multi-tenant cloud).

Механізм ізоляції: реалізовано за допомогою VLAN/VXLAN-тунелювання в Open vSwitch.
4. Методика проведення експериментів
1. Базовий сценарій: пряме з’єднання хостів без використання SDN і NFV.
2. SDN-сценарій: маршрутизація трафіку через Ryu-контролер із застосуванням OpenFlow-

правил.
3. SDN+NFV-сценарій: додаткове впровадження ізоляції підмереж і фільтрації трафіку між

сегментами.
Для кожного сценарію проводилися заміри таких параметрів:
- середня затримка (ping, ICMP-тести);
- пропускна здатність (iperf3);
- втрата пакетів (% packet loss);
- завантаження CPU та RAM на віртуальних машинах.
Результати
Було реалізовано три сценарії:
1. Базове з'єднання без віртуалізації;
2. Використання SDN для маршрутизації трафіку;
3. Додавання функції ізоляції підмереж через NFV.
У сценаріях 2 та 3 зафіксовано зменшення затримки трафіку на ~25% у порівнянні з базовим,

підвищену надійність маршрутизації та повну ізоляцію між віртуальними підмережами.
Обговорення

Отримані результати підтверджують ефективність використання мережевої віртуалізації
для побудови адаптивних хмарних середовищ. Застосування SDN та NFV значно спрощує
управління мережею, знижує витрати на апаратне забезпечення та забезпечує гнучкість
розгортання сервісів. Обмеженням є складність початкового налаштування та необхідність
спеціалізованих знань.

Висновки
Мережева віртуалізація є важливою технологією для підтримки сучасних хмарних сервісів.

Використання відкритого ПЗ (FOSS) робить її доступною для навчання, досліджень і малого
бізнесу. Подальші дослідження планується зосередити на автоматизації розгортання та інтеграції
з платформами Kubernetes та OpenStack.

Подяки
Дослідження виконано в межах навчального проєкту з підтримки відкритого ПЗ. Подяка

спільнотам Mininet та Ryu за документацію та підтримку.
Список використаних джерел
1. Kreutz, D. et al. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.
2. ETSI. (2014). Network Functions Virtualisation (NFV); Architectural Framework.
3. Mininet. (n.d.). https://mininet.org
4. Ryu SDN Framework. (n.d.). https://osrg.github.io/ryu/
5. Open vSwitch Documentation. (n.d.). https://docs.openvswitch.org

https://mininet.org/
https://osrg.github.io/ryu/

65

Zavorotnyi O. V.
Chernihiv Polytechnic National University

Zavorotnyi Oleksandr Vyacheslavovych,
cornored@gmail.com

MONITORING AND LOAD FORECASTING OF THE TELECOMMUNICATION SERVICES

IN DIGITAL LEARNING ECOSYSTEM

Annotation:
The stability of IP telephony systems directly depends on the performance of server infrastructure and

the ability to prevent overloads. In this work, we present a monitoring and forecasting system based on open-
source software that collects CPU, RAM, disk usage, and call detail records (CDR) from an Asterisk server.
The collected metrics are processed using the Holt-Winters exponential smoothing model to predict server
load and ensure proactive resource management. Experimental results demonstrate the effectiveness of the
proposed system in detecting anomalies and forecasting peak loads. This approach contributes to increasing
the reliability of communication services in educational and business environments.

Key-words:
Education, science, monitoring, forecasting.
Introduction:
The development of a modern digital learning ecosystem is impossible without high-quality

communication between teachers, students, and the university’s administration.
That is why we see the need to research and model a system for monitoring and load forecasting

on telecommunications services.
The stability of the server infrastructure directly affects the quality of communication channels,

and the lack of proper control can lead to system overload, loss of data and calls, and reduced
communication efficiency.

A monitoring system is a set of software and hardware tools designed to collect, analyze, and
visualize the status of server hardware and software. The main purpose of such systems is to ensure stable
operation of services, prevent failures, and optimize resources.

Materials and methods:
The monitoring system is built on the basis of:
- Asterisk – a VoIP server that generates CDR records;
- MariaDB – a DBMS for storing CDRs;
- MongoDB – for storing system metrics;
- Docker – containerization of microservices;
- Grafana and VictoriaMetrics – for visualization and storage of time series;
- Python and FastAPI – an API implementation for processing requests and interacting with

databases;
- The Holt-Winters (ETS) – forecasting model, which takes into level, trend and seasonality of data set;
Results:
Applying predictive models in IP telephony systems enables proactive management of potential

peak loads, such as during business hours or marketing campaigns, thereby enhancing the reliability and
quality of services.

mailto:cornored@gmail.com

66

The Holt-Winters model with seasonality (ETS – Exponential Smoothing State Space Model) is a
robust statistical tool for forecasting time series[1] data with trends and seasonality. It is particularly
effective in analyzing seasonal fluctations in server metrics, network load, and resource utilization,
making it invaluable for capacity planning in digital ecosystems.

Key advantages of the model are:
1. Triple Exponential Smoothing. The model incorporates three components – level (𝐿𝐿𝑡𝑡), trend (𝑇𝑇𝑡𝑡),

and seasonality (𝑆𝑆𝑡𝑡) - using the following recursive equations for the additive variant:
(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿):𝐿𝐿𝑡𝑡 = 𝛼𝛼(𝑦𝑦𝑡𝑡 − 𝑆𝑆𝑡𝑡−𝑚𝑚) + (1 − 𝛼𝛼)(𝐿𝐿𝑡𝑡−1 + 𝑇𝑇𝑡𝑡−1)

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇):𝑇𝑇𝑡𝑡 = 𝛽𝛽(𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1) + (1 − 𝛽𝛽)𝑇𝑇𝑡𝑡−1
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆):𝑆𝑆𝑡𝑡 = 𝛾𝛾(𝑦𝑦𝑡𝑡 − 𝐿𝐿𝑡𝑡) + (1 − 𝛾𝛾)𝑆𝑆𝑡𝑡−𝑚𝑚

(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹): ỹ𝑡𝑡+ℎ = 𝐿𝐿𝑡𝑡 + ℎ ∗ 𝑇𝑇𝑡𝑡 + 𝑆𝑆𝑡𝑡+ℎ−𝑚𝑚
where:
𝑦𝑦𝑡𝑡 = observed value at time t,
𝑚𝑚 = seasonality period (e.g., 12 for monthly data),
𝛼𝛼,𝛽𝛽, 𝛾𝛾 = smoothing parameters

2. Flexibility. The additive variant (for constant seasonal amplitude) and multiplicative variant (for
changing amplitude) enable tailored solutions for different data behaviors.

3. Computational Efficiency. Unlike ARIMA[2], Holt-Winters requires minimal historical data and
is less computationally intensive, making it suitable for real-time monitoring systems.

During the experiments, five options for the Holt-Winters (ETS) model parameters were tested for
predicting the load of IP telephony servers. The main evaluation criteria were: mean relative forecast
error (MAPE), median relative error (Median APE), proportion of large deviations (>25%) and stability
of the forecast curve.

Key results:
The lowest level of average error (≈13.9%) was shown by the configuration with parameters α =

0.1, β = 0.01, ɣ = 0.1. It provides high accuracy, but had a small delay in tracking seasonal fluctuations.

Picture 1 – Chart for α = 0.1, β = 0.01, ɣ = 0.1

67

The configuration α = 0.2, β = 0.05, ɣ = 0.1 demonstrated the optimal balance between accuracy
(MAPE≈14.6%) and graph stability.

Picture 2 – Chart for α = 0.2, β = 0.05, ɣ = 0.1

More aggressive settings (e.g. α = 0.7, β = 0.2, ɣ = 0.05) increased the sensitivity to noise and
resulted in a significant in error (≈17,5%)

Picture 3 – Chart for α = 0.7, β = 0.2, ɣ = 0.05

Table 1 – Examined combinations of α, β and ɣ
Variant(α, β, ɣ) MAPE % Median APE % Share % APE > 25% RMSE

α = 0.1, β = 0.01, ɣ = 0.1 13.88 11.80 13.07 17.15

α = 0.1, β = 0.01, ɣ = 0.05 14.13 12.24 14.39 17.39

α = 0.2, β = 0.05, ɣ = 0.1 14.59 11.89 16.48 17.83

α = 0.2, β = 0.2, ɣ = 0.2 17.03 13.43 22.54 19.23

α = 0.7, β = 0.2, ɣ = 0.05 17.53 13.77 23.67 21.69

68

Discussion:
The results confirm that the Holt-Winters method is appropriate for load forecasting tasks in IP

telephony systems. If effectively takes into account both daily and weekly seasonality characteristic of
work cycles, ensuring forecast accuracy within the acceptable error range for the industry (≈15%)

Compared to ARIMA, the ETS model turned out to be less resource-intensive and suitable for real-
time operation. At the same time, unlike machine learning methods, it does not require large data sets
and complex optimization. This makes Holt-Winters an optimal compromise for VoIP infrastructure,
where speed and clarity of forecast are important.

The limitations of the method include its sensitivity to sharp anomalous load peaks that do not fit
into a seasonal pattern. However, pre-processing of the data can reduce this effect.

Thus, the use of Holt-Winters provides not only statistical accuracy, but also practical
interpretability of forecast, which is key for real-time decision-making in IP telephony.

List of used sources
1. Rob J. Hyndman, George Athanasopoulos. Forecasting: Principles and Practise [electronic resource]. Access mode:

https://otexts.com/fpp3/regression.html
2. I. Vorobets. Porivnyannya metodiv prohnozuvannya chasovykh ryadiv [electronic resource]. Access mode:

https://elartu.tntu.edu.ua/bitstream/lib/40260/2/XNTK_2022_Vorobets_I-ComParison_ of_time_series_forecasting_23.pdf
3. Khyzhniak A. V., Prila O. A. Designing a system for automated generation and automated assessment of

parameterized practical assignments. Technical sciences and technologies, Vol.2. Access mode: Розробка системи
автоматизованої генерації та перевірки параметризованих практичних завдань | Технічні науки та технології

4. Aileen Nielsen. Practical Time Series Analysis // O’Reilly Media. – 2019. – c. 215-234. Access mode:
https://books.google.com.ua/books?id=odCwDwAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false

5. James Turnbull. Monitoring with Prometheus // Turnbull Press. – 2018. – c. 45-72.Access mode:
https://books.google.com.ua/books?id=EtlfDwAAQBAJ&printsec=frontcover&hl=ru#v=onepage&q&f=false

6. Russel Bryant, Leif Madsen, Jim Van Meggelen. Asterisk: The Definitive Guide [electronic resource]. Access mode:
https://www.asteriskdocs.org/

7. Cole Nussbaumer Knaflic. Storytelling with Data: A Data Visualization Guide for Business Professionals // Wiley
Publishing. – 2015. – c. 93-112. Access mode: https://books.google.com.ua/books?id=retRCgAAQBAJ&printsec=
frontcover&redir_esc=y#v=onepage&q&f=false

Ткаченко К. О., Роговенко А. І. Бобришев Є. С.

здобувач другого (магістерського) рівня вищої освіти гр. МКІ-241
Науковий керівник – Роговенко А. І., к.т.н., доцент

Національний університет «Чернігівська політехніка»
(м. Чернігів, Україна)

ВИКОРИСТАННЯ ВІЛЬНОГО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ

КЛАСИФІКАЦІЇ АУДІОСИГНАЛІВ

Задача розпізнавання та класифікації звуків розглядається у різних сферах від часу появи

перших акустичних систем. У більшості випадків такі рішення застосовувались у військовій та
промисловій галузях, де використовувались спеціалізовані апаратні комплекси та закрите програмне
забезпечення. Поширення задач у побутових, освітніх та наукових системах аудіообробки формує
потребу у доступних рішеннях, що можуть функціонувати на недорогому обладнанні.

Для реалізації подібних систем використовуються методи машинного навчання, зокрема
штучні нейронні мережі. Вони застосовуються для класифікації звукових подій, оскільки здатні

https://otexts.com/fpp3/regression.html
https://elartu.tntu.edu.ua/bitstream/lib/40260/2/XNTK_2022_Vorobets_I-ComParison_
http://tst.stu.cn.ua/article/view/337118
http://tst.stu.cn.ua/article/view/337118
https://books.google.com.ua/books?id=odCwDwAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.com.ua/books?id=EtlfDwAAQBAJ&printsec=frontcover&hl=ru#v=onepage&q&f=false
https://www.asteriskdocs.org/
https://books.google.com.ua/books?id=retRCgAAQBAJ&printsec=%20frontcover&redir_esc=y#v=onepage&q&f=false
https://books.google.com.ua/books?id=retRCgAAQBAJ&printsec=%20frontcover&redir_esc=y#v=onepage&q&f=false

69

працювати з тензорними представленнями спектрограм та автоматизовано виокремлювати
ознаки сигналу. Це забезпечує можливість використання єдиних алгоритмічних підходів для
аналізу даних, отриманих з різних типів джерел аудіоінформації, включно з промисловими
сенсорами та побутовими мікрофонами.

Використання вільного програмного забезпечення створює умови для побудови таких
систем. Поєднання мови програмування Python, бібліотеки PyTorch та операційної системи
Ubuntu формує відкритий стек інструментів для машинного навчання. Це забезпечує прозорість
процесів, можливість адаптації до конкретних завдань та відсутність витрат на ліцензування, що
дозволяє застосовувати такі рішення у дослідницьких та освітніх проєктах [1].

Операційна система Ubuntu використовується як платформа для побудови експериментальної
системи. Ubuntu є дистрибутивом Linux, розробленим компанією Canonical Ltd., який поєднує ядро
Linux із набором відкритих програмних компонентів і пакунків для користувача.

Ubuntu поширюється під ліцензією GPL (GNU General Public License), що дозволяє
відкривати вихідний код, змінювати його та розповсюджувати у незмінному або модифікованому
вигляді без обмежень щодо комерційного використання [2]. У нашій задачі Ubuntu забезпечує
середовище для запуску Python, бібліотек для обробки аудіо та тренування нейронних мереж, а
також сумісність з драйверами для апаратного прискорення.

Мова програмування Python застосовується для реалізації алгоритмів обробки сигналів та
побудови моделей нейронних мереж. У нашій системі використовується реалізація CPython, яка
є стандартною і найбільш поширеною версією Python. CPython було створено Гвідо ван Россумом
у 1991 році і надалі підтримується спільнотою Python Software Foundation. Python поширюється
під ліцензією Python Software Foundation License, що дозволяє безкоштовно використовувати,
змінювати та поширювати програмне забезпечення, включно з комерційним використанням [3].

Інтерпретатор CPython перетворює вихідний код Python у байт-код, який потім виконується
віртуальною машиною Python (Python Virtual Machine). Байт-код може звертатися до стандартних
бібліотек і модулів, що забезпечує доступ до чисельних функцій, роботи зі звуком і візуалізації.
Схематично роботу інтепретатора наведено на рисунку 1.

Рисунок 1 – Структура інтерпретатора CPython та процес виконання Python-коду

У нашому випадку Python забезпечує підготовку даних, формування спектрограм та
інтеграцію з бібліотекою PyTorch для побудови та навчання нейронних мереж.

Бібліотека PyTorch широко застосовується для побудови та навчання нейронних мереж.
Вона поширюється під ліцензією BSD (Berkeley Software Distribution), яка є відкритою ліцензією
з мінімальними обмеженнями. BSD дозволяє вільно використовувати, модифікувати та
розповсюджувати код, навіть у комерційних проєктах, за умови збереження оригінальних

70

авторських позначок та ліцензійних повідомлень [4]. Використовуючи ключові об’єкти цієї
бібліотеки, такі як torch.nn.Conv2d, torch.nn.ReLU, torch.nn.MaxPool2d та torch.nn.Linear, було
створено типовий згортковий нейронний мережевий модуль (CNN) для класифікації
аудіосигналів, що ілюструється на рисунку 2.

Рисунок 2 – Типова структура згорткової нейронної мережі для класифікації аудіосигналів

Отже, застосування відкритого програмного забезпечення, зокрема Python, бібліотеки
PyTorch та операційної системи Ubuntu, забезпечує середовище для побудови систем класифікації
аудіосигналів. Python та CPython використовуються для підготовки даних та формування
спектрограм, які передаються в нейронні мережі, а PyTorch забезпечує побудову та навчання
згорткових моделей. Ubuntu надає платформу для запуску програм, сумісність із бібліотеками та
драйверами апаратного прискорення. Поєднання цих компонентів дозволяє автоматизовано
обробляти аудіосигнали та виконувати їх класифікацію на основі навченої моделі.

Список використаних джерел
1. Kumar K. Audio classification using ML methods. 2023. С. 1–12. URL: https://www.researchgate.net/

publication/371175929_Audio_classification_using_ML_methods.
2. Canonical. Ubuntu open-source licences. 2025. URL: https://canonical.com/legal/open-source-licences
3. Python Software Foundation. History and License. 2025. URL: https://docs.python.org/3/license.html
4. PyTorch. License. 2025. С. URL: https://docs.pytorch.org/FBGEMM/general/License.html

Кулак О. Ю.
здобувач другого (магістерського) рівня вищої освіти гр. МКІ-241

Науковий керівник – Зайцев С.В. д.т.н., професор
Національний університет «Чернігівська політехніка»

(м. Чернігів, Україна)

КОНТРОЛЬ ЯКОСТІ ДАНИХ У CRM ЗА ДОПОМОГОЮ
ВІДКРИТОЇ ПЛАТФОРМИ SUITECRM

Контроль якості даних у CRM-системах має значний вплив на діяльність бізнесу.

Некоректні, неповні або дубльовані записи про клієнтів, а також помилки у транзакціях та
аналітичних звітах можуть призводити до фінансових втрат, хибних управлінських рішень та
зниження рівня обслуговування клієнтів. У багатьох комерційних рішеннях контроль якості

https://www.researchgate.net/
https://canonical.com/legal/open-source-licences
https://docs.python.org/3/license.html
https://docs.pytorch.org/FBGEMM/general/License.html

71

даних реалізується за допомогою закритого програмного забезпечення, що вимагає ліцензійних
витрат та обмежує можливості адаптації.

Використання відкритих CRM-систем (FOSS), таких як SuiteCRM, дозволяє створювати
системи контролю якості даних із прозорою логікою роботи, доступним кодом та гнучкими
можливостями налаштувань. У роботі розглядаються методи перевірки заповненості клієнтських
карток, виявлення дублікатів, контролю коректності транзакцій та аналітичних звітів із
застосуванням відкритої платформи SuiteCRM, а також потенціал інтеграції її з іншими
інструментами для автоматизації та обробки даних.

SuiteCRM — це повністю відкрита CRM-система, реалізована на мові програмування PHP з
використанням фреймворку SugarCRM Framework. Проєкт має модульну архітектуру, де кожен
модуль відповідає за конкретний набір функцій (наприклад, Accounts, Contacts, Opportunities, Calls).
Відкрите програмне забезпечення SuiteCRM поширюється під ліцензією AGPLv3, що дозволяє
модифікацію, інтеграцію та використання у комерційних та дослідницьких проєктах без обмежень [1].

SuiteCRM використовує реляційну базу даних (MySQL/MariaDB), де дані організовані у
модульні таблиці, пов’язані між собою зовнішніми ключами. Це забезпечує цілісність інформації
та можливість контролювати її якість на різних рівнях.

Дана БД містить основні групи таблиць:
• accounts, contacts, leads, targets – таблиці для клієнтських карток і пов’язаних контактів;
• calls, meetings, emails, tasks, notes – модулі для зберігання історії взаємодій;
• opportunities, quotes, invoices, contracts, products – таблиці, що відповідають за продажі та

фінансові транзакції;
• reports, audit, logs – механізми контролю змін, аналітики та виявлення розбіжностей у даних;
• users, roles, user_roles, user_preferences – система керування користувачами та їхніми

доступами;
• campaigns, bugs, cases, project_tasks – допоміжні таблиці для маркетингу, управління

дефектами та сервісної підтримки [2].
• SuiteCRM побудована за шаблоном MVC (Model–View–Controller). Такий підхід забезпечує

чітке розділення логіки даних (Model), інтерфейсу користувача (View) та обробки запитів (Controller).
• Controllers відповідають за виконання дій користувача та взаємодію з моделями.

Наприклад, при зверненні за адресою index.php?module=Accounts&action=index система визначає
модуль Accounts і викликає метод index у відповідному контролері.

• Механізм кастомізації передбачає можливість створення власних контролерів у директорії
custom/modules/<Module>/controller.php. Якщо у модулі не виявлено власного контролера,
використовується стандартний — include/MVC/Controller/SugarController.php.

Розширення функціоналу здійснюється шляхом додавання нових дій (actions) у вигляді
методів у класі контролера (action_<Назва>). Це дозволяє підключати додаткові перевірки або
алгоритми контролю даних без змін у базовому коді.

Завдяки такій архітектурі SuiteCRM забезпечує гнучкість у налаштуванні бізнес-логіки,
зберігаючи при цьому контроль над якістю даних та підтримку модульного розширення
функціоналу [3].

SuiteCRM розгортається на базі LAMP-стека (Linux, Apache, MariaDB/MySQL, PHP). Для
коректної роботи необхідні веб-сервер Apache, сервер баз даних MariaDB та інтерпретатор PHP
із додатковими модулями (php-xml, php-mbstring, php-curl тощо). Основні кроки включають:

72

• інсталяцію Apache, MariaDB та PHP з необхідними розширеннями;
• створення окремої бази даних і користувача для SuiteCRM;
• налаштування параметрів PHP (ліміти пам’яті, OPCache, максимальний розмір

завантаження);
• завантаження пакету SuiteCRM у директорію /var/www/suitecrm та розгортання прав доступу;
• виконання скрипту suitecrm:app:install для ініціалізації структури БД;
• налаштування віртуального хосту Apache;
• забезпечення доступу через HTTPS за допомогою Certbot/LetsEncrypt [4].
Таким чином, SuiteCRM є повноцінною системою управління взаємовідносинами з

клієнтами, яка реалізує основні бізнес-процеси – від збереження даних про клієнтів і історії
взаємодій до управління продажами, контрактами та фінансовими операціями. Архітектура
побудована за принципом MVC, завдяки чому легко розділяються рівні даних, бізнес-логіки та
інтерфейсу, що створює умови для розширення функціоналу та реалізації механізмів контролю
якості даних безпосередньо у бізнес-логіці.

Крім того, SuiteCRM поширюється під вільною ліцензією AGPLv3, яка гарантує відкритість
початкового коду, право його модифікації та використання як у наукових, так і в комерційних
цілях без додаткових витрат на ліцензування.

Список використаних джерел
1. SuiteCRM. SuiteCRM Repository. 2025. URL: https://github.com/SuiteCRM/SuiteCRM/tree/master
2. DatabaseSample. SuiteCRM Database Structure. 2025. URL: https://databasesample.com/database/suitecrm-database
3. SuiteCRM Documentation. Controllers. 2025. URL: https://docs.suitecrm.com/developer/controllers/
4. Vitux. How to Install SuiteCRM on Ubuntu 22.04. 2024. URL: https://vitux.com/how-to-install-suitecrm-on-ubuntu-22-04/

Тєлєгін К. Є.

Національний університет «Чернігівська політехніка»,
Навчально-науковий інститут електронних та інформаційних технологій

Чернiгiв, Україна

CRM-СИСТЕМИ ДЛЯ БІЗНЕСУ АВТОМИЙОК ТА ДІТЕЙЛІНГ-ЦЕНТРІВ
НА ОСНОВІ ВІДКРИТОГО ПЗ

Анотація: У роботі розглянуто підхід до створення CRM-системи для мережі автомийок і

дітейлінг-центрів із використанням відкритого програмного забезпечення та платформи Node.js.
Проблематика полягає у відсутності доступних і гнучких інструментів для малого та

середнього бізнесу в сфері автосервісу, що призводить до використання громіздких або надмірно
дорогих рішень. Запропонована архітектура поєднує базу даних PostgreSQL, фреймворк NestJS та
інші FOSS-компоненти.

Результати дослідження демонструють можливість створення масштабованої, прозорої й
економічно вигідної CRM-платформи з модульною структурою. Система дозволяє автоматизувати
записи клієнтів, облік замовлень, інтеграцію з платіжними сервісами та управління персоналом.

Ключові слова: відкрите ПЗ; Node.js; CRM; бізнес; автомийка; дітейлінг.
Вступ
Малі та середні бізнеси у сфері автомобільного сервісу, зокрема автомийки та дітейлінг-

центри, займають важливе місце в міській інфраструктурі та щоденному житті автовласників.

https://github.com/SuiteCRM/SuiteCRM/tree/master
https://databasesample.com/database/suitecrm-database
https://docs.suitecrm.com/developer/controllers/
https://vitux.com/how-to-install-suitecrm-on-ubuntu-22-04/

73

Водночас вони стикаються з рядом викликів, пов’язаних із цифровізацією бізнес-процесів,
конкуренцією та зростанням очікувань клієнтів. Однією з ключових проблем є ефективна
організація управління: ведення бази клієнтів, планування графіків роботи персоналу, контроль
виконання замовлень, фінансовий облік і комунікація з клієнтами.

Більшість наявних CRM-рішень, які пропонуються на ринку, розроблені для великих
підприємств і передбачають складну інфраструктуру, тривале впровадження та високу вартість
ліцензії. Такі системи часто мають надлишковий функціонал, що не відповідає реальним
потребам невеликих автомийок, де важливішим є простота використання, швидкість розгортання
та мінімальні витрати на підтримку. Це призводить до того, що малі бізнеси змушені або
використовувати ручні методи управління (Excel-таблиці, месенджери, паперові журнали), або
витрачати кошти на продукти, які не приносять очікуваної ефективності.

У такій ситуації використання відкритого програмного забезпечення (FOSS) постає як
оптимальний варіант для створення спеціалізованих рішень. FOSS забезпечує прозорість коду,
гнучкість у налаштуванні та можливість інтеграції з іншими сервісами. Крім того, спільнота
розробників надає значну кількість готових бібліотек, модулів та інструментів, які дозволяють
суттєво скоротити час і вартість розробки.

Особливий інтерес становить застосування Node.js як основи для створення CRM-системи.
Завдяки своїй асинхронній архітектурі, Node.js добре підходить для обробки великої кількості
паралельних запитів, що є актуальним для бізнесу, де клієнти масово звертаються із заявками
онлайн. Використання сучасних фреймворків (NestJS, Express) у поєднанні з реляційними базами
даних (PostgreSQL) та контейнеризацією (Docker) дає змогу побудувати масштабовану та зручну
у використанні платформу.

Таким чином, актуальність дослідження полягає в пошуку ефективного, доступного й
адаптованого до потреб невеликих підприємств рішення. Створення CRM-системи для автомийок і
дітейлінг-центрів на базі відкритого ПЗ дозволить підвищити рівень автоматизації, знизити витрати
на управління та забезпечити конкурентоспроможність бізнесу в умовах динамічного ринку.

Матеріали та методи
Для побудови CRM-системи було обрано технологічний стек, який поєднує в собі відкриті

програмні рішення та сучасні методології розробки. Основою системи виступає Node.js —
серверна платформа, що характеризується неблокуючою обробкою запитів, високою
продуктивністю та активною спільнотою розробників. Саме ці властивості роблять Node.js
особливо придатним для створення веб-застосунків, які повинні обробляти значну кількість
одночасних звернень клієнтів.

Для структуризації коду та спрощення підтримки використано NestJS — прогресивний
фреймворк, який базується на архітектурі модулів і впроваджує принципи об’єктно-
орієнтованого та функціонального програмування. NestJS забезпечує зручний механізм інверсії
залежностей, підтримку декораторів та тісну інтеграцію з ORM-бібліотеками.

У якості системи управління базами даних обрано PostgreSQL — потужну реляційну СУБД
з відкритим кодом, яка добре зарекомендувала себе у виробничих середовищах. PostgreSQL
підтримує складні транзакції, JSON-структури, індексацію та розширення, що дозволяє
поєднувати реляційну й документ-орієнтовану моделі даних. Для взаємодії з базою застосовано
TypeORM, яка забезпечує високорівневий інтерфейс для створення та управління сутностями,
зв’язками між ними та виконанням запитів.

74

Для забезпечення відтворюваності й простоти розгортання застосунку використано Docker. Усі
сервіси системи упаковані у контейнери, що дозволяє швидко запускати CRM на будь-якому сервері
чи хмарному середовищі, незалежно від його операційної системи. Такий підхід спрощує
масштабування та підтримку, а також забезпечує однаковість конфігурацій на різних середовищах.

Додатково застосовувалися відкриті бібліотеки для інтеграції з платіжними сервісами,
календарями бронювання, а також модулі для роботи з картографічними сервісами (наприклад,
OpenStreetMap). Для документування API було використано OpenAPI/Swagger, що забезпечує
прозорість взаємодії та можливість інтеграції з іншими системами.

Для відтворюваності результатів дослідження були зафіксовані конкретні версії
інструментів: Node.js 20.11, NestJS 10, PostgreSQL 16, Docker 27, React 18. Весь код і
конфігураційні файли зберігаються у відкритому Git-репозиторії, що гарантує прозорість і
можливість повторного використання результатів іншими розробниками чи компаніями.

Таким чином, обрані матеріали та методи дозволяють створити CRM-систему, яка є
водночас масштабованою, доступною за вартістю, а також легко адаптується до потреб бізнесів
різного масштабу — від невеликих автомийок до мережевих дітейлінг-центрів.

Результати
У процесі розробки було створено прототип CRM-системи, орієнтований на автоматизацію

бізнес-процесів автомийок і дітейлінг-центрів. Система протестована в умовах тестового
впровадження в мережі з трьох локацій, що дозволило отримати перші кількісні та якісні результати.

Основний функціонал CRM охоплює:
1. Онлайн-запис клієнтів через веб-сайт та мобільний застосунок, з інтеграцією календаря

для вибору часу обслуговування.
2. Управління чергою та графіком персоналу: адміністратор має змогу бачити

завантаженість майстрів, формувати змінні графіки, уникати конфліктів у бронюваннях.
3. Облік історії замовлень: для кожного клієнта зберігається перелік відвідувань, обрані

послуги та коментарі персоналу, що дозволяє формувати індивідуальні пропозиції та нагадування.
4. Фінансовий модуль: автоматизоване створення рахунків, підтримка безготівкових

платежів та інтеграція з популярними платіжними сервісами.
5. Вбудована аналітика: система надає менеджерам статистику щодо кількості замовлень,

середнього чеку, найбільш затребуваних послуг, а також динаміку завантаження у різні періоди
доби чи дні тижня. У ході тестування було проведено вимірювання ефективності. Протягом двох
місяців після запуску системи в експлуатацію отримані такі результати:

6. Скорочення часу обслуговування клієнта на етапі оформлення замовлення на ~15%
завдяки автоматизації процесів бронювання та швидкому доступу до даних.

7. Зростання кількості повторних звернень клієнтів на 22%, що пояснюється зручністю
онлайн-запису та отримання персоналізованих нагадувань.

8. Покращення управління персоналом: завдяки централізованому плануванню завантаження
кількість конфліктних ситуацій із подвійними бронюваннями знизилась майже до нуля.

9. Фінансовий контроль став прозорішим: уся виручка та операції обліковуються в
реальному часі, що дозволяє уникати помилок у бухгалтерії та зменшує ризики шахрайства.

Додатковим результатом стало покращення взаємодії з клієнтами: система дозволяє
надсилати SMS- та e-mail-нагадування, формувати акційні пропозиції та бонусні програми для
постійних клієнтів.

75

Таким чином, впровадження CRM-системи на базі відкритого ПЗ довело свою
ефективність у реальних умовах. Отримані результати підтверджують, що використання FOSS
дозволяє значно підвищити якість обслуговування, зменшити витрати бізнесу та створити
додаткову цінність для клієнтів.

Обговорення
Отримані результати свідчать про практичну доцільність використання відкритого ПЗ для

побудови галузевих CRM-систем. Рішення на базі Node.js та PostgreSQL забезпечує гнучкість і
масштабованість, водночас залишаючись доступним для малого та середнього бізнесу. Порівняно
з комерційними аналогами, запропонована система має нижчу вартість впровадження, швидше
налаштовується й може адаптуватися до специфічних потреб автомийок і дітейлінг-центрів.
Водночас викликом залишається потреба у кваліфікованих ІТ-фахівцях для розробки та
підтримки, а також подальше забезпечення кібербезпеки даних.

Висновки
Запропонована CRM-система демонструє можливість ефективної автоматизації бізнес-

процесів у сфері автомобільного сервісу з використанням відкритого ПЗ.
Тестове впровадження показало зниження операційних витрат та зростання задоволеності

клієнтів. Система легко розширюється новими модулями й може масштабуватися на мережеві бізнеси.
Подальші дослідження варто спрямувати на інтеграцію з мобільними застосунками та

використання AI-модулів для прогнозування завантаження та персоналізації послуг.

76

НАУКОВЕ ВИДАННЯ

Міжнародна науково-практична конференція

«Вільне програмне забезпечення

у освіті, науці та бізнесі»

02-03 жовтня 2025 р.
м. Чернігів

Технічний редактор Мехед Д. Б., Гузь К. П.
Комп’ютерна верстка Мехед Д. Б.

Підписано до друку 12.12.2025. Формат 60×84/16.

Ум. друк. арк. – 4,42. Тираж 100 пр. Замовлення № 28/25

Редакційно-видавничий відділ Національного університету «Чернігівська політехніка»
14035, Україна, м. Чернігів, вул. Шевченка, 95.

Свідоцтво про внесення суб’єкта видавничої справи до Державного реєстру видавців,
виготовлювачів і розповсюджувачів видавничої продукції

серія ДК № 7128 від 18.08.2020 р.

	В72
	ISBN 978-617-7932-92-4
	https://feit.stu.cn.ua/foss/
	Перспективи застосування
	МЕРЕЖЕВА ВІРТУАЛІЗАЦІЯ В ХМАРНИХ СЕРЕДОВИЩАХ
	Анотація
	Вступ
	2.2. Open vSwitch (v3.1.1)
	2.3. Ryu SDN Controller (v4.34)

	Результати
	Обговорення
	Висновки
	Подяки
	Список використаних джерел
	1. Kreutz, D. et al. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.
	2. ETSI. (2014). Network Functions Virtualisation (NFV); Architectural Framework.
	3. Mininet. (n.d.). https://mininet.org
	4. Ryu SDN Framework. (n.d.). https://osrg.github.io/ryu/
	5. Open vSwitch Documentation. (n.d.). https://docs.openvswitch.org

